Faktor-Faktor yang Memengaruhi Jumlah Kasus Covid-19 di Jawa Barat

Euis Sartika, Sri Murniati

Abstract


Abstract, Covid-19 causes an infectious disease of the respiratory tract, which is spread through droplets from the nose or mouth when coughing or sneezing, West Java was ranked second for Covid-19 cases, Jakarta on December 30, 2020. The rapid spread of the virus from one location to another indicated a spatial effect in the modeling, Geography and demographics of West Java are quite varied, providing estimates of the number of sufferers vary.  This study incorporates spatial elements in the formation of the model so that the factors that influence the distribution of Covid-19 in 27 districts/cities of West Java, both globally and locally, will be obtained. The method used is Geographically Weighted Regression (GWR). The independent variables in this study were: Population Density Level (X1), Unemployment Rate (X2), Poverty Level (X3), Health Facilities (X4), and Number of Covid-19 Cases as response variables (Y). The results of the study show that the poverty rate (X3) affects the number of Covid-19 cases globally throughout the West Java region. The GWR model is better than the global model, this is indicated by the GWR coefficient of determination of 0,819415 which is greater than the global model, meaning that 81,94% of the number of Covid-19 cases is influenced by the independent variables, and the remaining 19,06 % influenced by other factors. In addition, the AIC GWR value is smaller than the global model and there are 27 local regression models for each district/city.

Abstrak. Covid-19 menyebabkan penyakit infeksi pada saluran pernapasan,  yang  menyebar melalui droplet dari hidung atau mulut ketika batuk atau bersin. Jawa Barat menduduki peringkat kedua kasus Covid-19 pada tanggal 30 Desember 2020. Penyebaran virus yang cepat dari suatu lokasi ke lokasi lainnya,  mengindikasikan adanya efek spasial dalam pemodelan. Geografis dan demografis Jawa Barat yang cukup bervariasi, memberikan estimasi jumlah penderita bervariasi. Penelitian ini memasukkan unsur spasial dalam pembentukan modelnya sehingga akan diperoleh faktor-faktor yang memengaruhi sebaran Covid-19 di  kabupaten/kota Jawa Barat, baik global maupun local. Metode yang digunakan adalah Geographically Weighted Regression (GWR). Variabel-variabel bebas dalam penelitian ini adalah :  Tingkat Kepadatan Penduduk (X1), Tingkat Pengangguran (X2), Tingkat Kemiskinan (X3), Sarana Kesehatan (X4) dan Jumlah Kasus Covid-19 sebagai variable respon (Y). Hasil penelitian menunjukkan bahwa tingkat kemiskinan (X3) memengaruhi Jumlah kasus Covid-19 secara global di seluruh wilayah Jawa Barat. Model GWR lebih baik dibandingkan model global,  hal ini ditunjukkan dengan nilai koefisien determinasi GWR sebesar  0,819415 lebih besar dibandingkan  model global, artinya 81,94% dari jumlah kasus Covid-19 dipengaruhi oleh variable-variabel bebasnya, dan sisanya sebesar 19,06% dipengaruhi factor lain.  Selain itu, nilai AIC GWR lebih kecil dibandingkan model global dan terdapat 27 model regresi local untuk tiap kabupaten/kota.


Keywords


Covid-19, GWR, Spasial, Jawa Barat

Full Text:

PDF

References


I. F. Fatati. H, Wijayanto, and A. M. Sholeh, “Analisis Regresi Spasial Dan Pola Penyebaran Pada Kasus Demam Berdarah Dengue (DBD) Provinsi Jawa Tengah,” Media Stat, vol. 10.no. 2. 2017.

W. Hadiwardoyo, “Kerugian Ekonomi Nasional Akibat Pandemi Covid-19 [National Economic Losses Due to the Covid-19 Pandemic],” Baskara J, Bus, Enterpreneursh, vol. 2. no. 2. 2020.

I. F. Mahdy, “Pemodelan Jumlah Kasus Covid-19 Di Jawa Barat Menggunakan Geographically Weighted Regression,” Semin, Nas, Off, Stat, vol. 2020. no. 1. 2021.

D. N. Sari and I. Yunita, “Tingkat Keparahan Dan Risiko Penyebaran Covid-19 Di Indonesia Dengan Menggunakan K-Means Clustering,” Semin, Nas, Off, Stat, vol. 2020. no. 1. 2021.

C. Christiani and L. B, Masalah, “Analisis Dampak Kepadatan Penduduk terhadap Kualitas Hidup Masyarakat Provinsi Jawa Tengah", 2014.

B. P. Statistik, Data dan Informasi Kemiskinan Kabupaten / Kota, Jakarta: Badan Pusat Statistik, 2020.

M. C. Fotheringham, A. Stewart, Chris Brundson, Geographically Weighted Regression , The Analysis of Spatially Varying Relationships, UK: John Willey and Sonc Inc, 2002.

C. Brunsdon, A. S. Fotheringham, and M. E. Charlton, “Geographically weighted regression: a method for exploring spatial nonstationarity 1996.

A. W. Brundson, Geographically Weighted Regression: A Method for Exploring Spatial Nonstationary, Ohio State University Press, 1996.

T. Nakaya, A. S. Fotheringham, M. Charlton, and C. Brunsdon, “Semiparametric geographically weighted generalised linear modelling in GWR 4,0,” Geocomputation 2009.

B. P. Statistik, PROVINSI JAWA BARAT DALAM ANGKA, Bandung: ©BPS Provinsi Jawa Barat/BPS-Statistics of Jawa Barat Province, 2020.

,

website resmi Gugus Tugas Percepatan Penanganan COVID-19 dan Kawal COVID19

https://covid19,who,int/?gclid=CjwKCAiAsaOBBhA4EiwAo0_AnFk5ZSl8fIkRM3UZnUtXdwNCn6b4LoqbGmwt57I9cd_KgniCsVlDQRoCM-AQAvD_BwE

https://bangka,tribunnews,com/2020/03/24/pengertian-lengkap-apa-itu-virus-corona-covid-19-gejala-cara-penularan-hingga-pencegahan?page=all,




DOI: https://doi.org/10.29313/ethos.v10i2.8372

Refbacks

  • There are currently no refbacks.


Alamat Redaksi:

LPPM Unisba, Lantai 2, Jl. Purnawarman 63, Bandung 40116, Jawa Barat, (022) 4203368 , (022) 4264064. ethos.unisba@gmail.com / ethos@unisba.ac.id

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License