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Abstract

Timely detection of patients with a high mortality risk in coronavirus disease 2019 (COVID-19) can substantially 
improve triage, bed allocation, time reduction, and potential outcomes. A potential solution is using machine 
learning (ML) algorithms to predict mortality in COVID-19 hospitalized patients. The study's objective was to 
create and verify individual risk assessments for mortality using anonymous demographic, clinical, and laboratory 
findings at admission, as well as to assess the possibility of death using machine learning. We used a standardized 
format and electronic medical records. Data from 2,313 patients were collected from two Muhammadiyah hospitals 
from January 2020 to July 2022. Utilizing each patient's clinical manifestation state at admission and laboratory 
parameters, 24 demographic, clinical, and laboratory results were studied. The algorithms analyzed were AdaBoost, 
logistic regression, random forest, support vector machine, naïve Bayes, and decision tree, which were applied 
through WEKA version 3.8.6. Random forest performed better than the other machine learning techniques, with 
precision, sensitivity, receiver operating characteristic (ROC), and accuracy of 78.6%, 78.7%, 85%, and 78.65%, 
respectively. The three top predictors were septic shock (OR=21.518, 95% CI=4.933–93.853), respiratory failure 
(OR=15.503, 95% CI=8.507–28.254), and D-dimer (OR=3.288, 95% CI=2.510–4.306). Machine learning–based 
predictive models, especially the random forest algorithm, may make it easier to identify patients at high risk of 
death and guide physicians' appropriate interventions.
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Introduction

In 2019, Wuhan province in China identified 
the first case of a novel coronavirus, which is 
considered to have been transferred from animals 
to humans.1 The virus is severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2). 
Originally known as the 2019 novel coronavirus 
(2019-nCoV), the disease is now known as 
COVID-19.2 In March 2020, the World Health 
Organization declared COVID-19 a pandemic.3

When COVID-19 patients are first admitted, 
doctors frequently can only adequately determine 
their prognosis once the disease has worsened. 
Additionally, the course of COVID-19 can change 
abruptly, causing a patient with a stable status to 
develop a critical condition quickly.4  Elderly age, 
male, and the presence of various comorbidities, 
such as diabetes, high blood pressure, high 
cholesterol levels, cardiovascular disease, and 
chronic kidney disease, have been linked to 
increased mortality rates and severe outcomes in 
individuals affected by COVID-19.5,6

Artificial intelligence (AI) is a discipline in 
computer science that aims to comprehend and 
construct intelligent entities, typically manifested 
as software programs.7 AI research has utilized 
machine learning techniques, which can consider 
intricate relationships to detect patterns within 
the given data. Standard machine learning 
algorithms can be broadly categorized into 
two sorts based on the tasks they aim to solve: 
supervised and unsupervised.7

The study about mortality prediction in 
COVID-19 patients using supervised machine 
learning conducted in Korea shows that LASSO 
and linear SVM demonstrated ROC values of 
94,6% and 97,7% in predicting mortality.8 Another 
international study in India using eXtreme 
Gradient Boosting shows a ROC value of 85.8%.9 
Compared to the machine learning models, 
the numerous studies applying conventional 
statistical models have significant methodological 
weaknesses and provide a substantial risk of bias 
within multiple fields of study.10
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Muhammadiyah Gamping General Hospital, 
Yogyakarta, are reference hospitals that applied 
structural electronic medical records; the 
electronic medical records can be easily and 
rapidly accessed compared to manual medical 
records.

The first aim of this study was to construct 
a model for predicting death from the first day 
of patient admission. The secondary purpose 
was to investigate predictors of COVID-19 
mortality. Six machine learning models were 
employed, utilizing the Waikato Environment 
for Knowledge Analysis (WEKA) version 3.8.6. 
WEKA is open-source software, and compared to 
other software such as Rapid Miner and Orange, 
WEKA offers a broader range of machine learning 
methods and facilitates SMOTE, a technique 
used to address imbalanced datasets in machine 
learning. It also enables data mining activities 
by providing an extensive array of tools for data 
preprocessing, classification, attribute selection, 
and visualization. Several standard familiar file 
formats can be utilized with WEKA, such as xls 
and csv.11

Methods

This retrospective observational study included 
a total population of 2,882 patients, all 
consecutive COVID-19 patients admitted to 
the PKU Muhammadiyah Yogyakarta and PKU 
Muhammadiyah Gamping General Hospital, 
Yogyakarta, Indonesia, from January 2020 to 

July 2022. Of these, 68 patients were pregnant, 
74 were children under 18, and 427 were missing 
or incomplete data. Then, the patients who met 
the inclusion criteria were 2,313 and applied for 
analysis.

The inclusion criteria were (1) SARS-
CoV-2 infection confirmed by RT-PCR assays 
on material collected by a nasopharyngeal 
and oropharyngeal swab, (2) hospitalized 
patients, and (3) age above 18 years. 
Excluded from the analysis were patients who 
died during admission, patients who did not 
have primary data, pregnancies, and patients 
who were relocated to other designated hospitals 
while hospitalized.

The required patient data acquired from their 
medical records were age, gender, cardiovascular 
risk factors (high blood pressure, type 2 
diabetes mellitus, and lipid disorders); primary 
comorbidities, including chronic renal disease; 
history of coronary artery disease, chronic 
obstructive pulmonary disease, and peripheral 
vascular disease; and laboratory results. 
Hospitalized COVID-19 patients who were 
deceased and those who lived were analyzed 
differently. Figure 1 shows the study design 
visualization.

The main objective of the study was to 
construct similar models with enhanced accuracy 
parameters to provide a mortality risk predictor.

Primary patient data, such as age and gender, 
were included within the clinical variables. 
A record of associated chronic diseases was 
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Figure 1	 Study Design Visualization
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collected, including diabetes, high blood pressure, 
cardiac and kidney disorders, and cancer. 
Laboratory parameters, such as lymphocytes, 
leukocytes, thrombocytes, neutrophils, D-dimer, 
glucose, creatinine, and hemoglobin, were 
evaluated. Out of 24 predictors, we selected these 
based on their odds ratio, p value, and relevance 
in clinical practice.

New variables were initially derived using 
Microsoft Excel 2013 to analyze the original data. 
Descriptive statistics for categorical variables 
used in this study are presented as absolute 
numbers (percentages). Since the study only 
used categorical variables, percentages were 
used to describe the data using chi-square tests 
to examine for correlations. The chi-square test 
was performed in bivariate analysis. The Pearson 
chi-square test or Fisher exact test was used, 
depending on which was suitable for analysis, 
and the odds ratio was computed. If p<0.05, it 
was considered significant. SPSS version 25.0 
was used to analyze the data.

Data preprocessing is an essential part of 
the data mining process. It includes cleaning, 
transforming, and integrating raw data for 
analysis. The steps of data preparation are 
cleaning the data, integrating the data, reducing 
the amount of data, and changing the data. 
Data cleaning is getting clear of wrong, missing, 
or inaccurate information from a dataset. 
Integrating data involves combining information 
from different sources into a single file.

Data reduction is the process of making a 
dataset smaller by getting rid of duplicate or 
unimportant data. Changes are made to the 
format or layout of data to be used in the mining 
process.

We evaluate the predictors of hospitalized 
mortality using a set of machine learning 
algorithms that were adjusted. Six supervised 
machine learning algorithms were used in WEKA 
version 3.8.6 to construct mortality prediction 
models utilizing the preprocessed data: AdaBoost, 
logistic regression (LR), random forest (RF), 
support vector machine (SVM), naïve Bayes, and 
decision tree (DT).

For this research's categorization problem, 
supervised machine learning was selected 
among different methods. The nonlinearity in 
the data was clarified by supervised machine 
learning, which also constructs a performance 
that maps the input (predictor variables) to the 
output (mortality). As input data are processed, 
the outcomes of supervised machine learning 

become more accurate, and the predictions are 
more likely to fall throughout the allowed range.12

Researchers used the synthetic minority 
oversampling technique (SMOTE) to make 
more examples for the surviving class, which is 
in the minority group. SMOTE oversamples the 
minority class by making more artificial samples, 
and this increases the size of the class with fewer 
samples. After that, the researchers implemented 
the spread subsample to decrease the number of 
subjects in the majority class or surviving class, 
thus reducing it to balance with the minority 
class. When we oversample the minority class 
and undersample the majority class or cut off 
several samples in the class with more samples, 
the classifier will work better.13

The optimum hyperparameters for each model 
were obtained using WEKA's explorer module. 
The selected hyperparameters were those with the 
highest performance values. The effectiveness and 
general error of the comprehensive classification 
models were assessed using a tenfold cross-
validation process system. All models were tested 
ten times using WEKA's experimenter module, 
and repeating ten-fold cross-validation was 
utilized to make comparisons of the performance-
based prediction.

To produce the performance metrics 
(sensitivity, specificity, accuracy, precision, and 
ROC) generated from testing alone, the validation 
findings from ten experimental models were 
combined.14

Building an accurate machine learning model 
requires a fundamental component called model 
performance evaluation. Utilizing performance 
metrics for the confusion matrix, the predictive 
models were assessed (Table 1).

We used assessment indicators comprising 
accuracy, specificity, precision, sensitivity, and 
ROC chart criteria to assess the performance 
of the predictive models. To determine the best 
model for predicting COVID-19 mortality, All of 
these evaluation measures were contrasted based 
on their performance (Table 2).

The Research Ethics Committee of PKU 
Muhammadiyah Gamping Hospital approved 
the study protocol with exemption number 144/
KEP-PKU/VII/2022). Additionally, because the 
study was retrospective, informed consent was 
not required.

Results

Between January 2020 and July 2022, a total 
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of 2,313 consecutive PCR-confirmed COVID-19 
patients were retrospectively analyzed. Six 
hundred and thirty-eight COVID-19 patients 
(27.6% of the total) died at the time of their 
hospitalization, while the remaining 1,675 
patients (73% of the total) survived. Table 3 
provides more information on the symptoms, 
comorbidities, vital signs, and laboratory findings. 
Significantly, the three top odds ratios were septic 
shock (21,518), respiratory failure (15,503), and 
D-dimer (3,288). Type 1 diabetes mellitus was 
the top predictor among comorbidities (1,453).

In Table 3, 3 datasets were created. The first is 
the original dataset, which has 1,675 instances of 
the class that survived and 638 instances that did 
not survive.

Following the processing of the SMOTE 
algorithm, the number of cases belonging to 
the minority class was increased by generating 
synthetic samples, and the resulting dataset was 
then saved in the second dataset. This dataset 
contains 1,675 cases that related to the survived 
class and 1,276 cases that related to the updated 

non-survived class.
The researchers then executed the spread 

subsample technique, which undersamples the 
majority class to create a balanced dataset, which 
was then saved in the third dataset. By executing 
the SMOTE and Spread Subsample steps, the 
researchers created a balanced dataset, which 
was then used to train and test the COVID-19 
predictor (Figure 2).

Figure 3 overviews the machine learning 
models' final testing results. The random forest 
algorithm was the best  machine learning, with 
a precision of 78.6%, sensitivity of 78.7%, ROC 
of 85%, and accuracy of 78.65%. The 85% ROC 
value indicates good accuracy. The ROC needs 
to be higher than 0.5 for a diagnostic test to be 
considered meaningful. ROC≥0.8 is typically 
regarded as acceptable.15

Discussion

We use a ten-fold cross-validation technique 
to increase data utilization for training and 

Table 1	 Confusion Matrix

Output
Predicted Values

Non-survival (+) Survival (−)

Actual value 
Non-survival (+) TP TN
Survival (−) FP FN

Note: TP: true positive is the number of cases the algorithm correctly classifies as positive; FP: false positive is the number of 
cases the algorithm incorrectly classifies as positive; FN: false negative is the number of cases the algorithm incorrectly classifies 
as negative; TN: true negative is the number of cases the algorithm correctly classifies as negative

Table 2	 Performance Evaluation Measures

Performance Criteria Item

Accuracy (TP+TN)/(TP+TN+FP+FN)
Precision TP/(TP+FP)
Sensitivity/recall TP/(TP+FN)
Specificity TN/(TN+FP)
Note: TP: true positive, TN: true negative, FP: false positive, FN: false negative

Table 3	 SMOTE and Spread Subsample Methods' Results

Dataset Number Technique Used No. of Cases from 
the Surviving Class

No. of Cases from the 
Non-survived  Class

1 − 1,675 638
2 SMOTE 1,675 1,276
3 Spread subsample 1,675 1,276
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validation instead of overfitting or data 
overlaps between the test and validation sets. 
Furthermore, this technique helped to decrease 
the deviation in prediction error and frequently 
used and recommended validation methodology 
in machine learning and data mining.16

Random forest was an effective machine 
learning algorithm to categorize the mortality 
risk in a study population of patients admitted 
to the PKU Muhammadiyah Gamping and 
PKU Muhammadiyah hospitals in Yogyakarta. 
This study was similar to other international 
studies,  such as a study in Italy suggesting that 
random forest was the best machine learning 
with an ROC score of 88%,17 and another study 
in Iran showed an ROC score of 83.6%.18 The 

random forest algorithm is a popular ensemble 
learning method that exploits the combination 
of numerous decision trees in order to create 
accurate predictions. Employing an ensemble 
technique helps reduce overfitting problems and 
enhance the overall generalized performance. 
Random forests have been observed to exhibit 
computational inefficiency and prolonged 
training times when used to huge datasets.19 
Several international studies have shown different 
results on the best machine learning algorithm. 
A study conducted on the Korean population 
suggests that the decision tree algorithm is more 
effective at predicting the probability of death 
among COVID-19-infected patients compared 
to different algorithms, such as the support 

Table 4	 Baseline Characteristics of Study Participants According to Mortality (Survival 
Vs Non-survival)

Parameters
Survival Non-survival

OR (95% CI) p
n % n %

Total sample
Comorbidity

Pneumonia
Hypertension
Septic shock
Chronic kidney disease
Acute kidney disease
Type 2 DM 
Type 1 DM
Asthma
Anemia
Respiratory failure
COPD
Cerebral infarction
CHF
Myocardial infarction

2,126

47
422

2
36

3
235
176
39
40
13
7

20
14
8

72.4

2.0
18.2

0.1
1.6
0.1

10.2
7.6
1.7
1.7

0.6
0.3
0.9
0.6
0.3

638

10
163

16
18
3

115
93

6
13
69

2
4

11
2

27.6

0.4
7.0
0.7
0.8
0.1
5.0
4.0
0.3
0.6
3.0
0.1
0.2
0.5
0.1

0.552 (0.277–1.098)
1.019 (0.826–1.259)

21.518 (4.933–93.853)
1.322 (0.745–2.345)

2.633 (0.530–13.080)
1.347 (1.055–1.721)
1.453 (1.110–1.903)

0.398 (0.168–0.945)
0.850 (0.452–1.600)

15.503 (8.507–28.254)
0.749 (0.155–3.617)
0.522 (0.178–1.533)
2.081 (0.940–4.609)
0.655 (0.139–3.094)

0.086
0.861
0.000*

0.339
0.356
0.017**

0.006**

0.031**

0.615
0.000*

1.000
0.229
0.065
0.736

Vital signs/laboratory result
High blood pressure 
SPO2<90%
Lymphocytes
Leukocytes
Thrombocytes
Neutrophils
D-dimer
Glucose
Creatinine
Hemoglobin

1,092
1,329

885
447
339

1,069
1,192

667
787
772

47.2
57.5
38.3
19.3
14.7
46.2
51.5

28.8
34.0
33.4

477
563
485
261
149
534
568
357
403
303

20.6
24.3
21.0
11.3
6.4

23.1
24.6
15.4
17.4
13.1

1.582 (1.289–1.942)
1.954 (1.494–2.556)
2.830 (2.304–3.475)
1.902 (1.571–2.303)
1.201 (0.965–1.494)
2.911 (2.307–3.673)
3.288 (2.510–4.306)
1.915 (1.593–2.303)
1.935 (1.137–2.334)
1.058 (0.881–1.270)

0.000*

0.000*

0,000*

0.000*

0.101
0.000*

0.000*

0.000*

0.000*

0.546
Demographics 

Gender (male)
Age>65 years

877
72

37.9
3.1

383
54

16.6
2.3

1.367 (1.136–1.645)
2.059 (1.429–2.966) 

0.001**

0.001**

Note: *p<0.001 and **p<0.05 considered significant, DM: diabetes mellitus, SPO2: peripheral oxygen saturation, COPD: chronic 
obstructive pulmonary disease, CHF: congestive heart failure, OR: odds ratio, CI: confidence interval
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Figure 2	 Odds Ratios of Top 15 Predictors based on Bivariate Analysis (p<0.05)

Figure 3	 Visual Comparison of Machine Learning Algorithm Capabilities for COVID‑19 
Mortality Prediction
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vector machine, naïve Bayes, logistic regression, 
random forest, and K-nearest neighbor.20 The 
results could differ due to the differences in the 
datasets used and the features selected.21

In this study, the patient's age over 65 years 
was the main predictor and high mortality risk, 
significantly indicated here with a high odds ratio 
(OR=2.059, 95% CI=1.429–2.966). Other studies 
also suggest that older age predicts an increased 
mortality risk.22 Comorbidities that are common 
among the elderly, including type 2 diabetes 
mellitus, high blood pressure, coronary artery 
disease, and pulmonary disease, are indicators 
of a poor prognosis, more significant mortality, 
and morbidity rates. The absence of symptoms 
in the older population and their ability to carry 
a significant viral load renders them a viable 
vector for viral transmission.23 Additionally, 
odds ratios (OR=1.367, 95% CI=1.136–1.645) for 
men indicate a greater risk of mortality, which 
is consistent with a study conducted by Doerre 
and Doblhammer24 that death rates are twice 
as high for men than for women in every age 
group. The expression of angiotensin-converting 
enzyme 2 (ACE2) receptors, which have a role 
in facilitating the entry of the SARS-CoV-2 virus 
and its transmission between humans, exhibits 
variations across individuals of various sexes. 
Estradiol has the potential to exert an effect on the 
expression of ACE2, a gene that is situated on the 
X chromosome. This chromosomal location may 
confer susceptibility to evading X-inactivation in 
females.

Septic shock was a high predictor in this 
study (OR=1.518, 95% CI=4.933–93.853). It is 
consistent with several international studies. An 
increased risk of death has been associated with 
respiratory symptoms, including respiratory 
failure and low oxygen levels (SPO2<90%, see 
Table 3). It has been extensively researched in 
United States populations.26

In this study, comorbidities also had a minor 
impact on mortality risk prediction. These results 
are similar to another study27 but only partially 
consistent with international studies, which 
have demonstrated that comorbidities play a 
significant role in risk prediction.28

Diabetes mellitus was the only comorbidity 
with an implication on mortality in this study. 
The odds ratios of types 2 and 1 diabetes mellitus 
were 1.347 (95% CI=1.055–1.721) and 1.453 (95% 
CI=1.110–1.903), similar to the meta-analysis 
carried out by Kumar et al.29 Even though all 

types of diabetes mellitus have been linked 
to an elevated risk of in-hospital COVID-19-
related mortality, our findings revealed that the 
risk was higher in type 1 diabetics than in type 
2 diabetics. Various factors could explain this 
finding. Types 1 and 2 diabetes mellitus differ in 
terms of COVID-19-related mortality for a variety 
of reasons, including their distinct causes and 
pathophysiologies, patterns of complications 
or iatrogenic harms (such as hypoglycemia), 
treatments, intensity and duration of glycemia, 
and the effects of comorbidities either not 
taken into account in these analyses or were not 
appropriately considered.30

Among the laboratory features tested during 
admission, lymphopenia (<1 mg/dl) had an OR of 
2.830 (95% CI=2.304–3.475), which matches the 
findings of a systemic review and meta-analysis.31 
Other significant factors including increased 
leucocytes (≥11 mg/dl), neutrophils (≥6 mg/dl), 
creatinine (≥1.2 mg/dl), and D-dimer (≥0.5 mg/
dl) were shown to be mortality risk factors. These 
findings were similar to another international 
study.32

Conclusions

Independent predictors of mortality in patients 
with COVID-19 were age above 65 years, male, 
and diabetes mellitus. They have vital signs and 
laboratory tests: septic shock, respiratory failure, 
O2 saturation, higher leucocytes, neutrophils, 
creatinine, and D-dimer. These parameters could 
be combined in a random forest machine learning 
model to provide a moderate-accuracy predictor 
of mortality with an ROC of 85%.
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