The Use of Ovitrap and the Female Aedes sp. Density in the Tamansari Village of Bandung City

Siti Annisa Devi Trusda, Ratna Dewi Indi Astuti, Cice Tresnasari


Dengue hemorrhagic fever (DHF) incidence in Indonesia, which become one of the mortality causes, is relatively high. Therefore, the government launched the mosquito nest eradication (MNE) movement with an indicator of the larva-free rate to reduce the incidence of DHF. Another effort in vector control is using ovitrap to break the life chain of dengue vectors. This study aimed to determine the effect of using ovitrap on the female Aedes sp. density in the Tamansari village area of Bandung city. This quantitative experimental study was conducted on 60 houses in two neighborhood associations in the Tamansari village area. Both community groups were assessed for ovitrap index and the number of eggs trapped on ovitrap filter paper before and after treatment. The treatment group consisting of 30 houses was given one ovitrap inside and one ovitrap outside the house for four weeks. Ovitrap is changed every five days. The second group is the control community. The data obtained were analyzed using the Wilcoxon and chi-square tests with a degree of confidence of 0.05. In this study, the ovitrap index of this area was found between 0.67–0.80, which indicates that this area is at high risk of DHF transmission. Statistical tests showed that the use of ovitrap did not affect female Aedes sp. density as assessed by the ovitrap index. The results showed that using ovitrap could not control the population of Aedes sp.


Aedes sp.; density; ovitrap; ovitrap index

Full Text:



Pusat Data dan Informasi, Kementerian Kesehatan Republik Indonesia. Situasi penyakit demam berdarah di Indonesia tahun 2017 [Intenet]. Jakarta: Kementerian Kesehatan Republik Indonesia; 2018 [cited 2020 December 28]. Available from:

Pusat Data dan Surveilans Epidemiologi, Kementerian Kesehatan Republik Indonesia. Demam berdarah dengue di Indonesia tahun 1968–2009. Bul Jendela Epidemiol. 2010;2:1–14.

Bhatia R, Dash AP, Sunyoto T. Changing epidemiology of dengue in South-East Asia. WHO South East Asia J Public Health. 2013;2(1):23–7.

Astuti RDI, Ismawati, Hanum L. The resistance of Aedes aegypti to permethrin 0.25% insecticide, malathion 0.8%, and transfluthrine 25% in the Universitas Islam Bandung Tamansari campus. GMHC. 2019;7(3):213–7.

Kasai S, Komagata O, Itokawa K, Shono T, Ng LC, Kobayashi M, et al. Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism. PLoS Negl Trop Dis. 2014;8(6):e2948.

Melo-Santos MA, Varjal-Melo JJ, Araújo AP, Gomes TC, Paiva MH, Regis LN, et al. Resistance to the organophosphate temephos: mechanisms, evolution and reversion in an Aedes aegypti laboratory strain from Brazil. Acta Trop. 2010;113(2):180–9.

Stenhouse SA, Plernsub S, Yanola J, Lumjuan N, Dantrakool A, Choochote W, et al. Detection of the V1016G mutation in the voltage-gated sodium channel gene of Aedes aegypti (Diptera: Culicidae) by allele-specific PCR assay, and its distribution and effect on deltamethrin resistance in Thailand. Parasit Vectors. 2013;6(1):253.

McAllister JC, Godsey MS, Scott ML. Pyrethroid resistance in Aedes aegypti and Aedes albopictus from Port-au-Prince, Haiti. J Vector Ecol. 2012;37(2):325–32.

Lidia K, Levina E, Setianingrum S. Deteksi dini resistensi nyamuk Aedes albopictus terhadap insektisida organofosfat di daerah endemis demam berdarah dengue di Palu (Sulawesi Tengah). MKM. 2008;3(2):105–10.

Sunaryo, Ikawati B, Rahmawati, Widiastuti D. Status resistensi vektor demam berdarah dengue (Aedes aegypti) terhadap malathion 0,8% dan permethrin 0,25% di Provinsi Jawa Tengah. J Ekol Kesehat. 2014;13(2):146–52.

Widiarti, Heriyanto B, Boewono DT, Widyastuti U, Mujiono, Lasmiati, et al. Peta resistensi vektor demam berdarah dengue Aedes aegypti terhadap insektisida kelompok organofosfat, karbamat, dan pyrethroid di propinsi Jawa Tengah dan Daerah Istimewa Yogyakarta. Bul Penelit Kesehat. 2011;39(4):176–89.

Zuhriyah L, Baskoro TST, Kusnanto H. Efektifitas modifikasi ovitrap model Kepanjen untuk menurunkan angka kepadatan larva Aedes aegypti di Malang. JKB. 2016;29(2):157–64.

Rahayuningsih, Suryono, Haryanti T. Efektifitas pemasangan ovitrap dalam menurunkan indeks entomologi (container index dan breteau index) di Desa Karangasem wilayah kerja Puskesmas Bulu Kabupaten Sukoharjo. Jurnal Ilmu Kesehatan Masyarakat Berkala. 2019;1(1):49–53.

Hoel DF, Obenauer PJ, Clark M, Smith R, Hughes TH, Larson RT, et al. Efficacy of ovitrap colors and patterns for attracting Aedes albopictus at suburban field sites in north-central Florida. J Am Mosq Control Assoc. 2011;27(3):245–51.

Marin G, Mahiba B, Arivoli S, Tennyson S. Does color of ovitrap influence the ovipositional preference of Aedes aegypti Linnaeus 1762 (Diptera: Culicidae). IJMR. 2020;7(2):11–5.

Hasnan A, Dom NC, Rosly H, Tiong CS. Quantifying the distribution and abundance of Aedes mosquitoes in dengue risk areas in Shah Alam, Selangor. Procedia Soc Behav Sci. 2016;234:154–63.

De Las Llagas LA, Tyagi BK, Bersales LGS. Aedes dengue vector ovitrap surveillance system: a framework for mosquito density prediction. Southeast Asian J Trop Med Public Health. 2016;47(4):712–8.

Farida A, Ahmad AH, Hadi UK, Hambal M, Fahrimal Y, Shafitri R. Ovitrap use in an epidemiology study of Aedes aegypti and Aedes albopictus in Kuta Alam sub-district Banda Aceh Indonesia. Proc Ann Int Conf Syah Kuala University. 2011;1(1):213–6.

Hidayati L, Hadi UK, Soviana S. Pemanfaatan ovitrap dalam pengukuran populasi Aedes sp. dan penentuan kondisi rumah. JEI. 2017;14(3):126–34.

Astuti RDI, Ismawati, Siswanti LH, Suhartini A. Sebaran vektor penyakit demam berdarah (Aedes aegypti) di kampus Universitas Islam Bandung. GMHC. 2016;4(2):82–6.

Arifin F, Astuti RDI, Hikmawati D. Hubungan profil rumah terhadap keberadaan nyamuk dewasa Aedes aegypti di RW 13, 14, dan 20 Kelurahan Tamansari Kota Bandung. Pros Pendidik Dr. 2016;2(1):1019–26.

Nascimento KLC, da Silva JFM, Zequi JAC, Lopes J. Comparison between larval survey index and positive ovitrap index in the evaluation of populations of Aedes (Stegomyia) aegypti (Linnaeus, 1762) North of Paraná, Brazil. Environ Health Insights. 2020;14:1178630219886570.

Codeço CT, Lima AWS, Araújo SC, Lima JBP, Maciel-de-Freitas R, Honório NA, et al. Surveillance of Aedes aegypti: comparison of house index with four alternative traps. PLoS Negl Trop Dis. 2015;9(2):e0003475.

Respati T, Feriandi Y. Breeding places of mosquito larvae and pupae in Bandung city. J Phys Conf Ser. 2020;1469:012119.

Kementerian Kesehatan Republik Indonesia. Kendalikan DBD dengan PSN 3M Plus [Internet]. Jakarta: Kementerian Kesehatan Republik Indonesia; 2016 February 7 [cited 2021 July 1]. Available from:

Nirmani MD, Perera KLNS, Galhena GH. Use of ovitrap surveillance to assess dengue outbreak risks in selected dengue endemic areas in Sri Lanka. SLJB. 2019;4(2):32–46.

Food and Environmental Hygiene Department, The Government of the Hong Kong Special Administrative Region. Dengue fever gravidtrap index update [Internet]. Hongkong: Food and Environmental Hygiene Department; 2021 [cited 2021 July 1]. Available from:

Ming LS, Adnan TH, Huck OC, Ibrahim M, Husin D, Abdullah NA, et al. Adult Aedes mosquito and dengue virus surveillance in residential and public areas of Selangor, Malaysia. Southeast Asian J Trop Med Public Health. 2018;49(4):553–65.

Gustave J, Fouque F, Cassadou S, Leon L, Anicet G, Ramdini C, et al. The increasing role of roof gutters as Aedes aegypti (Diptera: Culicidae) breeding sites in Guadeloupe (French West Indies) and consequences on dengue transmission and vector control. J Trop Med. 2012;2012:249524.

Greenberg JA, DiMenna MA, Hanelt B, Hofkin BV. Analysis of post-blood meal flight distances in mosquitoes utilizing zoo animal blood meals. J Vector Ecol. 2012;37(1):83–9.

Brown HE, Cox J, Comrie AC, Barrera R. Habitat and density of oviposition opportunity influences Aedes aegypti (Diptera: Culicidae) flight distance. J Med Entomol. 2017;54(5):1385–9.


pISSN 2301-9123 | eISSN 2460-5441

Visitor since 19 October 2016: 

Free counters!

Global Medical and Health Communication is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.