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1. Introduction

This work tackles the parameter estimation for regression problems with fuzzy data.
Generally, the estimation problems consist in choosing and minimizing an objective function
(see Arthanary and Dodge [1]). One of the most used methods in this domain is fuzzy least
squares (Diamond [5,6,7] and Coppi [4] for triangular fuzzy numbers; Ming, Friedman and
Kandel [11] in a more general case). This paper brings together two models, consequently two
approaches for this subject: first, proposed by Coppi et al. [4] and the second, given by Ming et
al. [11]. We generalize the two norms in each case and obtain the weighted models. This kind of
weighted models describes with more accuracy various phenomenons (for example a lot of
economic models). The estimations for parameters and the regression lines in each distinct
situation are given.

2. The Weighted Coppi Model

We generalize and test the viability of the algorithm developed by R . Coppi et al. [4] for
estimation problems which implies fuzzy data.

Let the input fuzzy variables X,,...,X  and a fuzzy output variable,Y , on a size n sample
[4]. The data will be denoted by (V,,%),i=1n, where x| = (X, -+ Xy, ) - We work with LR

fuzzy variables: Y = (m,l,u) 5, where

L(Q] y<m:(l >0),
u(y) =
R(%) y>m:(u>0).
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We consider the theoretical values x, 0, , 0, and the errors ¢, ¢, &, . Thus we may write
m=u+¢
m—l=(w-0.)+¢& (2.1)

m+u=(u—a_u)+g_U

Or, after a reparametrization:

u=F,
6_L=77L,u+g_L1 (2.2)
Oy =nyp+éyl

where F is a matrix, whose rows have the form f;" = [fl(xi),...,fp(xi)]. Thus the theoretical

values of the output variable are Yi* = (,ui ,0,,0y. )LR ,i=1n,

Definition 2.1

We introduce the following weighted distance which is a generalization of a metric proposed by
Coppi and d'Urso [4]: for w= (W, W,,W,) we have

~ o~

d*(w, ¥;y7) =d* (W (M, 1) g, (1,0,.0, ) 12) = Alp (W)
= w,m = +w, |- A1)~ (u— 20| +

wi(m = ) = (= p2,)|

Theorem 2.1

The following relation holds:

A2(W; ;77 = (W, Wy, w,)[(m — )T (M= 2] - 2w, A(m— )" (1= 0, ) +
W, 22 (1=3,)T (1-8,) + 2W,p(M - 1) (u—3,) +
Wop? (U=3,)" (U=3,).

Proof:

~ o~

20000 S 2 . 2 2
d°(W; 5357 = Al (w;) = wym— g +w, |(m— i) - 20 -0, +

wy|m— )+ p(u-a,)|
=w,(m— z)" (M- u) +

[, (= )" (M = 12) — 20,2 — 1) (1 -8,) +

w2 (1-0,)" (1-0,)] +

[ (m— )" (M= ) + 20 p(m— 1) (u—3,) +

wp? (U -2,) (U-2,)
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— (W, + W, +w)|(m— )T (m— )|
— 2w, A(m - )" (1-3,) + W, 22 (1 -0,)T (1 -2, )] +

2w, (M — 1) (U=3, ) + Wy (U =3, )" (U=3y).
For particular case W, =W, =W, =1 we obtain the results from Coppi and d'Urso [4].

Remark 2.1
The algorithm for finding y,7,,7,,4,,&, is reducing to minimizing the weighted distancedfv

between the experimental measurements of the response variable y,, i = 1_n and the theoretical

values Vi*. In other words, we have to solve the problem:

min AZLR(W;Z177LI77U15L7§U)'

VAL Y/ VRV

Theorem 2.2

The problem  min AZLR(W;Z,UL,UU,gL,gU)admits local solutions (local minimum)

VAL /S VRNV

which may be improved using an iterative estimation algorithm.

Proof:

We have:

N Wy, 11, 11 60, 60) = (W, Wy, Wo)[(M = F )T (M= F y)
2W,A(m — Fz)T A-Fyn -15)+
w, A (L— Fym - 1) (- Fyn —15)+
2wyp(m—Fy)" (u—Fyn, —18,) +

W, 0 (U — Fymy —15)" (U —Fym, —14)
= (W, W,, W,)[(m" — 2mTF7_/+ yTFTFz) -

2w A(M' T =m'Fy —m"E -y F' +y Fyp + 7 Fllg) +
w22 (1T =2I"F, —2"e +y FTFyni + 2y F & +nél) +
2wyp(m'u—m"Fym, —m'le, —y Flu+y F Fym, + 7 Fl1el) +
wW,o%(U'u — 2uTFz77U —2u"1g, +ZTFTFZUS + ZZTFT177U5U +né&d).

We equate to zero the partial derivatives of AT, (W;7,,7,,€.,65,7):
TET TET TET TET T
W[y F'm—y ' FTFy—A(y FTl -y FTFyn -y F15)] =0 (2.1)

W3[—ZTFTm+ZT FT Fz—p(ZTFTu —ZTFTFZ% —ZTFT1§U =0 (2.2)
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WZ[ZTFT1—mT1+A(IT1—7_/TFTF177L—nfL)]:O (2.3)
W[y F 1+m'1- pu™1- 7 FTF 1, —n&,)]=0 (2.4)

F FZT [(w, + W, +W,) - 2w, A5, + Wziznf +2wW, o1, + Wspzﬂj] =
(W, +W, + W) F'm—w,A(F'mzy, +F'1-F"1&) + (2.5)
W3P2(FTU77U - FT177U§U)

An iterative solution is given by relations (2.6)-(2.10):
=2 G FENAG FI= FE) - F'm=y FTFy)]  (26)
m=p (FFN G/ Flu-y F1E)+( Fim=y FTFy)] (27)
E =(MA)AT (1 -Fyy)-T (m-Fy)] (2.8)
& =) [pT (U-Fyn,) + 1T (M=Fy)] (2.9)

7= (W, +w, +W,) =W, A7, (2—An.) +Wyom, (2 + o1, )]71 :
(FTF)_lFT)x
[(w, +w, +Ww)m—w,A(mn, +1-1£) + W, (I, —17.&) +

w,p(mz, +u _1§u)+W3P2(U77U =17,6,)1

(2.10)

We don't have the certainty that the equations (2.6)-(2.10) give a global solution. It's
necessary to resort to an iterative algorithm. The routine for finding the iterative solution with
help of a computer is available in literature (see Coppi et al.).

Remark 2.2

After some calculation, we observe that the properties of the solution obtained from the
weighted model are the same as in the Coppi's nonweighted model (see Coppi et al. [4],
Proposition 1,2,3):

w1 (m-2)=0wT (1-0)=0wT u-3,)=0;

i) w(m—2)" =0,

i) (1-0,)" 0, =0; (U-4,)"dy =0,

where /1, i ,éu are the iterative solutions obtained from the normal equations system (2.6)-
(2.10).
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3. An Extension for The Ming Approach

In this section, a weighted model especially based on Ming approach in the field of fuzzy
optimization, is developed.

Definition 3.1.
We consider a fuzzy space F' as a function space with the following properties [2,11]:

i)  The elements of F' are the functions f :R — [0,1] , which are called fuzzy numbers;
i) f(x,)=1forsome x, eR;

i) f(ax+@Q—a)y)>min{f(x), f(y)}, x,yeR,ae[0]];

iv) 'Xiﬂ?SUp f(x)=f(t),teR;

v) [f]° =closere{t/t R, f (t) > O} is compact.

Definition 3.2
If f,geF", BeR,re[0]1] wemay introduce [10,12]:

{%2 r},0<rs1;

{L > 0}, r=0;
f(t)

consequenctly, the operations with fuzzy numbers are:

) [f] +[0] ={a+b/ae[f],belg]'}:;

i) AL f] ={Aalac[f]}.

Remark 3.1

[£] =[f(r), f(r)] is a closed interval and [8,11]:

i) f(r) E a bounded left continuous nondecreasing function over [0,1];
i) ?(r) is a bounded left continuous nonincreasing function over [0,1];
iii) f(r)<f(r), forall re[01];

iv)the functions[ f (r), f(r)] define a unique fuzzy number f e F*.

Remark 3.2
Since X; :(Xi(r),Z(r))e F* then the triangular form for X is:

X; = (%,U;,u;) where X;(r)=% —U +ur and X;(r) =X +U —ur [11].
Definition 3.3

Now we consider a generalization of metric D,[2,3,8,9,11], in fact a weighted metric:
for f,g,we F' we define the weighted distance between f and g as follows:
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D(w; f,g) = J' \Lv(r)(j(r) —g(r))zdr + Iv_v(r)(?(r) —§(r))2dr.

For X, :(ﬁ(r),Z(r))e F' input independent variables, Y :<\£(r),\7i(r))e F' response
variables and W, = (ﬂ(r),v_vi(r))e F!,i=1n, we have:

X Z(Xnﬂyu_i): Y, =<yi"ﬁ"7i)' W, Z(Znt_-t_-) where

X (1) =% —U; +ur, Xi(r) =X —Ui +uir,

Y () =y, =V, +yr,Yi(r) =y, —Vi +vir,

w () =z —t +tr,wi(r) =z —ti +tir.

We assume that the dependence between X and Y is given by Y =a+bX; a, b are

unknown real parameters and b#£0. It is necessary to estimate a, b using weighted least squares
method.

Thus we must minimize the sum of squared deviations between theoretical and experimental
values:

S(a,b) =) D*(w;a+bX,Y,).
i=1
Theorem 3.1

The sum of squared deviations S(a,b) depends on sign of real parameter b.

Proof:

JOESION
2

1
We approximate I f(r)dr~ see [6,11]).
0

If b>0 we have
i=1

Had :ih W (r)(a-+bX, () =Y, (N)dr + [w,(r)(a-+bXi(n-Y, (r»zdr}

n
i=1

:Z{ - st ) +&—wdr}+

>

=1

{f(zi +t, —tn[a+b(x +u —ur) -y, —v‘i+v7r]2dr]:

> (2~ t)la-+b(x, —u) - (y, ~WI +

i=1

(2 +1)[a+b(x, +U;) = (y, + VI +22,(a-+bx — )’}

N| -

If b <0 we obtain

5,(a.b) {{ [w(n)@+bX,(n) - Y,(n)’dr + [w(r)@+bX;(r)-Y, (r»Zdr}:
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>

{.[(z,—t +tr)fa+b(x —u —ur)-y,-v, - vr]d2+dr}

=

{I(z +t —tr)[a+b(x -y, +ur) -y, — v, +v,r dr}~

I3 {0t b0 +0) - (g~ +

(7 +ti)[a+b(xi —U;) = (Y; +V,)I? +22,(a+bx — Yi)z}-

I\)

In conclusion, if b > 0 then S(a,b) =S,(a,b); if b <0 then S(a,b) =S,(a,b).

Theorem 3.2

The problem min _S(a,b) has a unique solution (a,b) . Consequently, there exists a single
aeR,beR”

line, the best line Y =a +bX which fit the given data (X.,Y,).
Proof:

We have the problem
min _S(a,b).

aeR,beR”

Accordingly to Theorem 3.1 we must discuss two possibilites:

1) b >1. After equate with zero the partial derivatives of S(a,b) we obtain the system:
a3 [4z, +§ -1+ b [z ~4)05 ) +(z, ~E)05 1) +22.x] =
DI -0 )+ @+ ) +azy]
a3z, =)0 1) (2~ D)0 ~0) + 22,x]
B 107 ~8)0% )" +(z, <05 )" + 221
S0 )06~ ~ )+ (2 +E)0% + T+ )+ 225y, ]

i=1

The determinant is:
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A = {Zn:[(z| _t_|) +(z; _t_|) + 2Zi]}'

{” [(z =)0 —u)* +(z +5)0 +1)* + 22ixf]}—

1

> Il

{Z[(zi —t,)(% — ) + (z, —t)(% +u7)+2zixi]} >0,

from Cauchy-Schwarz inequality. We may A, >0 (because X, are independent variables), and
obtain a unique minimization point (a,b,) for S;(a,b):
A A

a. b,
=—2> Db =—=> where
a A, b, A,

=3

A, =1, [(zi—t_i)(yi—g)+(zi+t7)(yi+v7)2+2ziyi]}-

{” [(z; —t)(% —Uu)* +(z, —t)(X +u‘i)+22ix5]}—
{” [z, ~ )0 ~ )y — ) + (2 +5)0% + 8, +v7)+2zixiyi]}.
{i{(zi )06 )+ (2 50 + ) + 2zixi]} and

{" [47, +1, 1) ]}-

A, =
{ [(zi—t_i)(xi—ﬁ)(yi—\ﬁ)+(zi+t_i)(xi+u_i)(yi+\7i)+22ixiyi]}—
{ [(zi—t_i)(xi—5)+(zi+t7>(xi+u7)+2zixiyi]}.

S -

=

1
1

=1

{Z[(zi —t)(Y; = V) + (Z + )Y, +v‘i>+2ziyi]}.

i=1

2) b < 0. We have:

ad 142, +§ 1+ DY 02 )0 +1) +(2 +5)0% ) + 22%] =
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S -t~ )+ @+ D)+ )+ 22y
a3 [z ~ 1)~ B) +(z ~ )% ~u) + 22, ] +
D312 )06 ~ )+ ~5)0% ~)° +22X7] =

0 )06~ ~ W)+ (2 106 + U+ )+ 225y, ]

A, = {imzi +, —t_i]}{i[(zi —H)06 +U)* + (2 + 1) (% +U)* + Zzixf]}—

{i[(zi — ) (% —U;) + (7 +t—i)(xi +U;) + Zzixi]} >0.

As in above case we obtain that this system has a unique minimization point (a,b).

It S(a,B) <S(a,.b,) then (a,b) < (a,b).
If S(a,b) > S(a,.b,) then (@,5) = (ay,b,).

Thus we obtain a unique solution for estimation problem. The theorem was proved.
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