Hubungan Sentimen Investor, Volume Perdagangan dan Kebijakan Moneter Pada Perkembangan Pasar Modal di Indonesia

Putri Fariska, Nugraha Nugraha, Mochamad Malik Akbar Rohandi

Abstract


ABSTRACT

 

The growth of the capital market greatly influences a positive or negative sentiment that can come within the country or abroad which leads to a policy of a country. The purpose of this study is to determine the relationship between investor sentiment, trade volume and monetary policy taken by the government on the development of the capital market in Indonesia during the last ten years. Using the granger causality test in Vector Autoregression (VAR) and Impulse Response Function (IRF) analysis modeling to capture dynamic and casual relationships between variables in the 2011-2020 period. From the results of this study it is known that investor sentiment and monetary policy have an influence on trading volume. capital market in Indonesia where the relationship is only one way. Another finding that resulted is that the response received by trading volume if a shock occurs to investor sentiment is convergent, initially the response given during the shock will eventually disappear and will not leave a permanent impact. However, if a shock occurs in monetary policy, the response to trading volume will be negative and convergent, while investor sentiment will be positive and convergent.

 

Keywords: Investor Sentiment, Trading Volume, Monetary Policy, Capital Market

 

ABSTRAK

 

Perkembangan pasar modal sangat berpengaruh pada suatu sentimen positif atau negatif yang dapat berasal dari dalam negeri maupun luar negeri yang mengarah pada suatu kebijakan suatu negara. Tujuan dari penelitian ini adalah untuk mengetahui hubungan sentimen investor, volume perdagangan dan kebijakan moneter yang diambil pemerintah terhadap perkembangan pasar modal di Indonesia selama sepuluh tahun terakhir. Menggunakan tes uji kausalitas granger pada pemodelan analisis Vector Autoregression (VAR) dan Impulse Response Function (IRF) untuk menangkap hubungan dinamik dan kasual antar variabel pada periode 2011 - 2020. Dari hasil penelitian ini diketahui bahwa sentimen investor dan kebijakan moneter mempunyai pengaruh pada volume perdagangan pasar modal di Indonesia dimana hubungan yang terjadi hanya bersifat searah. Temuan lainnya yang dihasilkan adalah respon yang diterima oleh volume perdagangan jika terjadi guncangan pada sentimen investor adalah bersifat konvergen, pada awalnya respon yang diberikan selama masa guncangan pada akhirnya akan menghilang dan tidak akan meninggalkan dampak yang permanen. Namun apabila terjadi guncangan pada kebijakan moneter maka respon volume perdagangan akan bersifat negatif dan konvergen sedangkan sentimen investor akan bersifat positif dan konvergen.

 

Kata kunci: Sentimen Investor, Volume Perdagangan, Kebijakan Moneter, Pasar Modal

 


References


Baker, M., & Wurgler, J., 2004. Investor Sentiment In The Stock Market. Journal of Economic Perspectives, 21(2), 129–151. doi:10.1257/jep.21.2.129.

Barberis, N., Shleifer, A. dan Vishny, R. 1998. A Model Of Investor Sentiment. Journal of Financial Economics, 49(1998): 307-343.

Blajer-GołeRbiewska, A., Wach, D., & Kos, M. 2018. Financial Risk Information Avoidance. Economic Research, 31(1), 521–536. doi:10.1080/1331677X.2018.1439396.

Bollen, J., Mao, H. dan Zeng, X‐J., 2011.Twitter Mood Predicts The Stock Market, Journal of Computational Science, Vol. 2, pp. 1–8.

Coyne, S. 2018. Forecasting Stock Prices Using Social Media Analysis. Proceedings - 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing, 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing, 2017 IEEE 3rd International Conference on Big Data Intelligence and Computing and 2017 IEEE Cyber Science and Technology Congress, DASC-PICom-DataCom-CyberSciTec 2017, 2018, 1031-1038. doi:10.1109/DASC-PICom-DataCom-CyberSciTec.2017.169.

Daniel, K., Hirshleifer, D., & Subrahmanyam, A. 1998. Investor Psychology Dan Security Market Under-Dan Overreactions. Journal of Finance, 53(6), 1839–1885. doi:10.1111/0022- 1082.00077.

De Bondt, W. F., & Thaler, R. 1985. Does The Stock Market Overreact? The Journal of Finance, 40(3), 793–805. doi:10.2307/2327804.

De Long, J. B., Shleifer, A., Summers, L. H., & Waldmann, R. J. 1990. Noise Trader Risk In Financial Markets. Journal of Political Economy, 98(4), 703–738. doi:10.1086/261703.

Fama, E. F. 1970. Efficient capital markets: A Review Of Theory Dan Empirical Work. The Journal of Finance, 25(2), 383–417. doi:10.2307/2325486

Fama, Eugene, dan Kenneth French, 1993, Common Risk Factors In The Returns On Stocks Dan Bonds, Journal of Financial Economics 33, 3–56.

Ferrer, E., Salaber, J., and Zalewska, A. 2016. Consumer Confidence Indices and Stock Markets' Meltdowns. The European Journal of Finance. Vol. 22. Pp: 195–220.

Fisher, K., and Statman, M. 2000. Investor Sentiment and Stock Returns. Financial Analysts Journal. Vol. 56 No. 2. Pp. 16-23.

Fuller, Russell J., 2000. Behavioral Finance And The Sources Of Alpha. Journal of Pension Plan Investing, Winter 1998, Vol. 2, No. 3.

Hong, H., and J. Stein, 2004. Disagreement and the Stock Market. Journal of Economics Perspectives, 21, 2, 109–128.

Joseph, K. 2011. Forecasting Abnormal Stock Returns And Trading Volume Using Investor Sentiment: Evidence From Online Search. International Journal of Forecasting, 274, 1116-1127, ISSN 0169-2070. doi:10.1016/j.ijforecast.2010.11.001.

Jansen, W., and Nahuis, N. J. 2003. The Stock Market and Consumer Confidence: European Evidence. Economics Letters. Vol. 79 No. 1. Pp: 89-98.

Juanda, Bambang & Junaidi. 2012. Ekonometrika Deret Waktu. IPB Press: IPB Bogor.

Kahneman, D., Tversky, A., 1979. Prospect Theory: An Analysis Of Decision Under Risk. Econometrica : Journal of the Econometric Society 47 (2), 263–291.

Kurov, Alexander, 2010. Investor Sentiment And The Stock Market’s Reaction To Monetary Policy. Journal of Banking & Finance: Volume 34, Issue 1, January 2010, p. 139-149. https://doi.org/10.1016/j.jbankfin.2009.07.010.

Lee, Y. Peirsman, A. Chang, N. Chambers, M. Surdeanu, and D. Jurafsky. 2011. Stanford’s Multi-Pass Sieve Coreference Resolution System At The Conll-2011 Shared Task. ACL HLT 2011.

Lemmon, M., and Portniaguina, E. 2006. Consumer Confidence and Asset Prices: Some Empirical Evidence. Review of Financial Studies. Vol. 19 No. 4. Pp: 1499–1529.

Lucey, B. M., & Dowling, M. 2005. The Role Of Feelings In Investor Decision-Making. Journal of Economic Surveys, 19(2), 211–237. doi:10.1111/j.0950-0804.2005.00245.x

M. Ángeles López-Cabarcos, Ada M. Pérez-Pico, Paula Vázquez-Rodríguez & M. Luisa López-Pérez, 2019. Investor Sentiment In The Theoretical Field Of Behavioural Finance. Economic Research-Ekonomska Istraživanja. DOI: 10.1080/1331677X.2018.1559748

Makrehchi, M., Shah, S., & Liao, W. 2013. Stock Prediction Using Event-Based Sentiment Analysis. In Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2013 IEEE/WIC/ACM International Joint Conferences (Vol. 1, pp. 337–342). IEEE.

Mao, H., Counts, S. dan Bollen J. 2011. Predicting Financial Markets: Comparing Survey, News, Twitter dan Search Engine Data. arXiv preprint arXiv:1112.1051, Cornell University Library.

Nofsinger, R. J., 2005. Social Mood dan Financial Economics. The Journal of Behavioral Finance. 6(3):144-160.

Nooijen, S.J. 2016. Predicting Equity Markets with Digital Online Media Sentiment: Evidence from Markov-switching Models. Journal of Behavioral Finance, 174, 321-335, ISSN 1542-7560. doi:10.1080/15427560.2016.1238370.

Odean, T., 1998. Volume, Volatility, Price, Dan Profit When All Traders Are Above Average. Journal of Finance 53, 1887–1934.

Pagolu, V.S., Reddy, K.N., Panda, G., Majhi, B. 2016. Sentiment Analysis Of Twitter Data For Predicting Stock Market Movements. In: International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), Paralakhemundi, pp. 1345– 1350 (2016). https://doi.org/10.1109/scopes.2016.7955659.

Pompian, Michael, M., 2006. Behavioral Finance and Wealth Management: How to Build Optimal Portfolios That Account for Investor Biases. John Wiley & Sons, Inc., Hoboken, New Jersey.

Raiffa, H. 1968. Introductory Lectures on Choices under Uncertainty Reading, MA: Addison-Wesley.

Rechenthin, M. 2013. Stock Chatter: Using Stock Sentiment To Predict Price Direction. Algorithmic Finance, 23, 169-196, ISSN 2158-5571. doi:10.3233/AF-13025.

Renault, T. 2017. Intraday Online Investor Sentiment And Return Patterns In The U.S. Stock Market. Journal of Banking and Finance, 84, 25-40, ISSN 0378-4266. doi:10.1016/j.jbankfin.2017.07.002.

Sabherwal, S. 2011. Do Internet Stock Message Boards Influence Trading? Evidence From Heavily Discussed Stocks With No Fundamental News. Journal of Business Finance and Accounting, 389, 1209-1237, ISSN 0306-686X. doi:10.1111/j.1468-5957.2011.02258.x.

Sahana, T.P. & J. Anuradha. 2019. Analysis and Prediction of Stock Market Using Twitter Sentiment and DNN. Advance in Intelligent Systems and Computing.

Smith, Adam. 1759. The Theory of Moral Sentiments.

Shefrin, H., Statman, M., 1985. The Disposition To Sell Winners Too Early Dan Ride Losers Too Long. Journal of Finance 40, 777–790.

Shiller, J. R., 1984. Stock Prices Dan Social Dynamics. Brookings Papers on Economic Activity. 2(1984):457-510.Raif

Sprenger, O. T., Tumasjan, A., Sdanner, G. P. dan Welpe M. I. 2014. Tweets And Trades: The Information Content Of Stock Microblogs. European Financial Management. 20(5): 926-957.

Sul, H. K., Dennis, A. R., & Yuan, L. 2016. Trading On Twitter: Using Social Media Sentiment To Predict Stock Returns. Decision Sciences, 48(3), 454–488. doi:10.1111/deci.12229.

Takeda, F. 2014. Google Search Intensity And Its Relationship With Returns And Trading Volume Of Japanese Stocks. Pacific Basin Finance Journal, 271, 1-18, ISSN 0927-538X. doi:10.1016/j.pacfin.2014.01.003.

Xie, C. 2017. Does Online Investor Sentiment Affect the Asset Price Movement? Evidence from the Chinese Stock Market. Mathematical Problems in Engineering, 2017, ISSN 1024-123X. doi:10.1155/2017/2407086.

Yao, C. 2017. A Study Of Correlation Between Investor Sentiment And Stock Market Based On Copula Model. Kybernetes, 463, 550-571, ISSN 0368-492X. doi:10.1108/K-10-2016-0297.

Zhang, Y. & Swanson, P. 2010. Are Day Traders Bias Free? Evidence From Internet Stock Message Boards. Journal of Economics Finance 34:96-112.

www.bi.go.id

www.idx.com




DOI: https://doi.org/10.29313/performa.v17i1.6670

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Jurnal Manajemen dan Bisnis (Performa)

Jurnal manajemen dan bisnis (Performa) diindeks oleh:


Alamat Redaksi:

Jl. Tamansari 1, Bandung 40116, Jawa Barat, (022) 4203368 pes. 210, (022) 4264064. jmb.performa@gmail.com / jmb.performa@unisba.ac.id

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International LicenseISSN 1829-8680 | E-ISSN 2599-0039