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ABSTRACT 
The Ensemble Kalman Filter (EnKF) has gain popularity as a methodology for real time updates of 
reservoir models. A sample of models is updated whenever observation data available. Successful 
application of EnKF to estimate reservoir properties has been reported. A flow modeling is missing in 
this research area. This paper presents the applicability of EnKF in flow modeling for three cases: 
infinite reservoir, bounded reservoir and one dimensional composite reservoir. The solution of flow 
equation was derived and used as a modeling component of state space modeling of Kalman filter 
updating formula. This three reservoir models shows that the EnKF methodology can be used for 
updating the reservoir models. 
Keywords: reservoir flow modeling; Kalman filter; ensemble Kalman filter. 

1. INTRODUCTION 
The Ensemble Kalman Filter (EnKF) is a promising method for updating reservoir properties of 
reservoir simulation models (Naevdal et al., 2007). Darcy’s law, mass conservation, petro 
physical behavior are the basics for modeling the fluid flow in the reservoir. The use of EnKF for 
updating reservoir models from the pressure measurements has been a topic for research.  The 
EnKF can update static (permeability, porosity),  and dynamic (pressure, gas oil ratio). The prior 
and posterior step are run sequentially. The flow simulations end at the next point in time 
where new measurements are to assimilated. The reservoir simulator is run once for each 
member of the ensemble. Applying the simulator on the state is used to estimate the covariance.  
In the posterior step, each member of the ensemble is updated.  In the prior step, only dynamic 
variables are updated, the static are updated in the posterior step. The EnKF is able to do 
continuous updating of the reservoir model, the reservoir models are kept up to date 
(Almendral-Vazquez, and Syversveen, 2006). Using reservoir simulator, Jafarpour and 
McLaughlin (2007) demonstrated the application of EnKF in water flooding experiments.  
However, the applicability of EnKF methodology coupled with  reservoir flow modeling has not 
been investigated. This paper presents the applicability of EnKF in flow modeling for three 
cases: infinite reservoir, bounded reservoir and one dimensional composite reservoir. The 
solution of flow equation was derived and used as a modeling component of state space 
modeling of Kalman filter updating formula. This three reservoir models shows that the EnKF 
methodology can be used for updating the reservoir models. 
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2. METHODOLOGY 
The diffusivity equation is considered as one most important expression in flow modeling.  The 
model is derived under assumption that the permeability and viscosity are constant over 
pressure, time and distance, and the fluid is assumed slightly compressible. The parameters 
are: P (pressure in psi), r (radius in ft),  t (time in hours), k (permeability in mD), μ  (viscosity in 

cp), φ  (porosity in %), c (total compressibility in 1psi− ). The equation is defined in a cylindrical  
reservoir with a hole as the well. Figure 1 shows a slice of the reservoir with geometry 
parameters: wr  (well radius), er  (external radius), BHPP P=  (bottom hole pressure), and h 
(thickness of the reservoir). 
 

 

 
 

Figure 1. Reservoir model: A slice of a bounded reservoir geometry (Almendral-Vazquez, 
Syversveen, 2006), wr  is the well radius, er  is the reservoir radius, and h is the reservoir 

thickness. The reservoir is modeled as a cylinder with a hole at the center. 
 
Infinite reservoir. Radial flow (reservoir infinite acting)  into a well, the pressure P depends  on 
the radius r and time t 
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Using Hankel transformation, the solution is given by the expression 
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0B  is the oil formation volume (well fields barrels/stock tank barrels), 0Q  is the oil flow,  

0 0B Q q=  is the flow rate, Ei is the exponential integral ( )
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Bounded reservoir. Consider a bounded reservoir model with inner and outer boundary: 
constant rate inner boundary and no flow outer boundary, in dimensionless notation 
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Using Laplace transform, the solution is given by 
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Composite reservoir. Radial fluid flow through composite reservoir regions represented by the 
diffusivity equations: 
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One dimensional composite reservoir. Consider a semi infinite composite regions 

( ) ( ),0 0,− ∞l U , the diffusivity equations are 
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The solutions are given by (Carslaw, Jaeger, 1980: 319) 



Sutawanir Darwis, dkk 

Statistika, Vol. 10, No. 1, Mei 2010 

38

( )

( )

( )
1i

1
i 0

1

2i 1 x
erfc

2 k t
P x, t P

2i 1 x
 erfc

2 k t

∞

=

⎧ ⎫− +
−⎪ ⎪

⎪ ⎪= α ⎨ ⎬
+ −⎪ ⎪α⎪ ⎪

⎩ ⎭

∑

l

l
 

( ) ( )i
2

i 0 1

2i+1 kx2PP x, t  erfc
1 2 k t

∞

=

+
= α

+σ∑
l

 

1

2

kk
k

= ,   2

1

k k
k

σ = ,  
1
1

σ −
α =

σ+
 

Consider a state-space model ( ) m
t t 1 tX f X −= + ε ,  o

t t tY GX= + ε  where tX  is the state at 

time t,  mε is the model error , o obsε = ε  is the observation error, f is a nonlinear function of the 
state X . Sakov and Oke (2008) derived a deterministic formulation of the EnKF. The  
methodology is based on prior-posterior equation 

( )a f fX X K Y GX= + − ,  ( ) 1f t f tK P G GP G R
−

= +  

where K is the Kalman gain, fX is the prior, aX  is the posterior, Y is the observations, G is 
the observation matrix, P is the forecast error covariance matrix, R is the observation error 

covariance matrix. The covariance P is manipulated via a sample of states ( )1 mX X , ,X= K , 

where m is the sample (ensemble) size 
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The posterior error covariance is (Sakov and Oke, 2008, 362) 
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3. RESULTS AND DISCUSSION 
This section intend to show how the EnKF may be used to update the reservoir model and to 
recover the true parameter values. The reservoir model is constant flow rate infinite (transient) 
reservoir Figure 2 shows the results for estimating storativity S h c= φ  and transmissivity  

T kh /= μ . The experiment was run for time period T = 5000 hours. The observations correct 
the parameters values, and a significant reduction in standard deviation. The iteration for 
transmissivity converges after 500 hours, the iteration for storativity takes longer iterations to 
converge. The experiment shows that the method works properly in well testing and interference 
analysis using line source solution.  
 

 
 

Figure 2. EnKF for interference test based on line source solution. The transmissivity 
T kh /= μ and storativity S h c= φ  converge to the true values 

 
Figure 3 shows 20 measurements (pressure) from build up test (Permadi, 2004) in time period 
of 72 hours. Due to the specific experiment, the pressures are increasing. The bounded 
constant flow rate and no flow is chosen as reservoir models. Using traditional approach, the 
permeability was estimated as truek 7.664=  mD. Using EnKF, the objective is to show that the 
filter will update the reservoir model after a number of iterations. The initial permeabilities was 

generated from ( )N 11,3;1 , the ensemble size is m = 100. The update of permeabilities  

converge to truek 7.664=  mD. The simulated WSP  was obtained from analytical solution with 

parameters iP 5000=  psi, time step 0.05 hours, experiment time 72 hours, number of 
observations 20. The simulated pressure converge to the observed pressure (Figure 4).  
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Figure 3. Pressure observations in build up test (Permadi, 2004); 72 hours after st 13630=  
hours production. The pressures increase as function of time t. There are three time regions: 

Early Time Region (ETR), Middle TR (MTR), and Late TR (LTR). 
 

 

 
Figure 4. Bounded constant flow rate no flow homogeneous reservoir. The mean of initial 

permeability distribution is larger than the true permeability. The initial permeabilities was 

generated from ( )N 11,3;1 , the ensemble size is m = 100. The update of permeabilities  

converge to truek 7.664=  mD. The simulated WSP  was obtained from analytical solution with 

parameters iP 5000=  psi, time step 0.05 hours, experiment time 72 hours, number of 
observations 20. The simulated pressure converge to the observed pressure. 
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The results from the third reservoir model; one dimensional composite reservoir, is shown in 
Figure 5. As expected, the permeabilities converge to the true permeabilities, and the simulated  
pressure matched the observed pressures. For the case of composite reservoir, the EnKF 
methodology can be used to recover the true reservoir model. 

 
Figure 5. Composite reservoir. The evolution for permeabilities of region I and region II and 

pressure (simulated and observed) 200, x 100= =l , 1.5μ =  cp,  15%φ = ,  iP 4000 psi= ,  
6 1c 12 10 psi− −= × . 

4. SUMMARY AND CONCLUSIONS 
In traditional history matching, the reservoir parameters are adjusted such that the flow 
simulations using the adjusted parameters match the measurements. Traditional methods do 
not allow for model updating as new measurements become available. EnKF is able to update 
the reservoir model in the posterior step. This paper demonstrated the applicability of the 
ensemble Kalman filter for updating reservoir models. The basics are the flow equation and the 
solution of the flow equation. Three models are considered: infinite reservoir (transient flow 
rate), radial bounded no flow homogeneous reservoir, and one dimensional composite reservoir.  
The solution of the flow equation is considered as reservoir model. The methodology can be 
adapted for commercial simulator. The updates are improved after assimilation the observation 
data. As expected, the iteration of permeability is converging to the true value.  
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