Diagram Kendali Simpangan Baku Eksak untuk Proses Berdistribusi Normal dengan Parameter σ Diketahui

ACENG KOMARUDIN MUTAQIN¹, SUWANDA

Program Studi Statistika Fakultas MIPA Universitas Islam Bandung, Purnawarman 63 Bandung, 40116.
¹E-mail aceng.k.mutaqin@unisba.ac.id

ABSTRAK

Makalah ini membahas pembentukan diagram kendali simpangan baku (diagram kendali S) eksak untuk kasus proses berdistribusi normal dengan parameter σ diketahui. Diagram kendali S eksak tersebut dibandingkan dengan diagram kendali S konvensional menggunakan ukuran $Average\ Run\ Lenght$ (ARL). Diagram kendali S konvensional terlalu sensitif terhadap perubahan yang kecil dari simpangan baku proses. Bahkan untuk kasus tertentu, ketika proses sebenarnya dalam kendali, diagram kendali S konvensional menyimpulkan bahwa proses sudah di luar kendali.

Kata Kunci: Average Run Lenght; diagram kendali simpangan baku; peluang kesalahan tipe I; teorema limit pusat.

1. PENDAHULUAN

Salah satu alat yang dirancang secara statistik dan sering digunakan dalam bidang industri adalah diagram kendali simpangan baku (diagram kendali S). Diagram kendali S ini sering digunakan untuk pengendalian simpangan baku proses dalam industri-industri manufaktur. Diagram kendali ini mengasumsikan bahwa proses berdistribusi normal. Secara umum ada dua jenis diagram kendali S. Pertama, diagram kendali S untuk kasus parameter simpangan baku proses, σ diketahui. Kedua, diagram kendali S untuk kasus parameter simpangan baku proses, σ tidak diketahui. Untuk lebih rincinya mengenai kedua jenis diagram kendali S tersebut dapat dilihat pada Montgomery (2001).

Diagram kendali S jenis yang pertama (yang selanjutnya akan disebut sebagai diagram kendali S konvensional) didasarkan pada distribusi dari peubah acak simpangan baku S. Sayangnya, pada saat menentukan batas-batas kendalinya didasarkan pada teorema limit pusat. Jadi diagram kendali S konvensional tersebut bisa disebut sebagai diagram kendali yang sifatnya pendekatan. Untuk memperoleh diagram kendali S eksak, caranya adalah pada saat menentukan batas-batas kendalinya langsung didasarkan pada distribusi sampling dari simpangan baku, S. Tujuan dari makalah ini adalah memaparkan pembentukan diagram kendali S eksak untuk kasus proses berdistribusi normal dengan parameter σ diketahui.

Makalah ini disusun sebagai berikut. Bagian 2 memuat penurunan distribusi sampling untuk peubah acak simpangan baku, S. Diagram kendali S konvensional dibahas pada Bagian 3. Bagian 4 menguraikan pembentukan diagram kendali S eksak. Perbandingan antara diagram kendali S eksak dan konvensional dikemukakan dalam Bagian 5. Sedangkan bagian terakhir berisikan kesimpulan dan diskusi.

2. DISTRIBUSI SAMPLING DARI SIMPANGAN BAKU, S

Misalkan $X_1, X_2, ..., X_n$ merupakan suatu sampel acak dari distribusi normal, $N(\mu, \sigma^2)$. Hogg dan Tanis (2001) telah menunjukkan bahwa peubah acak,

$$\frac{(n-1)S^2}{\sigma^2}$$

berdistribusi chi-square dengan derajat bebas (n-1), dimana S^2 merupakan variansi dari sampel acak di atas,

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}$$
 (1)

dan \overline{X} merupakan rata-rata dari sampel acak di atas,

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} \,. \tag{2}$$

Dapat ditunjukkan bahwa fungsi densitas peluang dari peubah acak simpangan baku, S, adalah

$$f(s) = \frac{2\left(\frac{n-1}{2\sigma^2}\right)^{\frac{n-1}{2}}}{\Gamma\left(\frac{n-1}{2}\right)} s^{n-2} e^{-\frac{n-1}{2\sigma^2}s^2}; \text{ untuk } s > 0.$$
(3)

Fungsi distribusi kumulatif dari peubah acak S adalah

$$F(s) = P\{S \le s\} = \int_{0}^{s} f(x)dx$$

$$F(s) = \int_{0}^{s} \frac{2\left(\frac{n-1}{2\sigma^{2}}\right)^{\frac{n-1}{2}}}{\Gamma\left(\frac{n-1}{2}\right)} x^{n-2} e^{-\frac{n-1}{2\sigma^{2}}x^{2}} dx$$

Dengan memisalkan $w = \frac{n-1}{2\sigma^2} x^2$, dapat ditunjukkan bahwa

$$F(s) = \frac{1}{\Gamma(\frac{n-1}{2})} \int_{0}^{\frac{n-1}{2\sigma^{2}}s^{2}} w^{\frac{n-1}{2}-1} e^{-w} dw.$$
(4)

Dapat ditunjukkan pula bahwa ekspektasi dan variansi dari peubah acak S masing-masing adalah

$$E(S) = c_4 \sigma \tag{5}$$

dan

$$Var(S) = (1 - c_4^2)\sigma^2$$
 (6)

dengan

$$c_4 = \left(\frac{2}{n-1}\right)^{\frac{1}{2}} \frac{\Gamma(n/2)}{\Gamma((n-1)/2)}.$$
 (7)

3. DIAGRAM KENDALI S KONVENSIONAL

Yang dimaksud dengan diagram kendali S konvensional dalam makalah ini adalah diagram kendali simpangan baku, S untuk kasus proses berdistribusi normal dengan parameter σ diketahui, dimana pembentukan batas-batas kendalinya menggunakan teorema limit pusat. Jadi diagram kendali konvensional ini sifatnya pendekatan.

Berdasarkan ekspektasi dan variansi dari peubah acak S yang ada pada Persamaan (5) dan (6), dapat dibentuk suatu peubah acak baru yaitu

$$Z = \frac{S - E(S)}{\sqrt{Var(S)}} = \frac{S - c_4 \sigma}{\sigma \sqrt{1 - c_4^2}}$$

Dengan menggunakan teorema limit pusat, untuk $n o \infty$, peubah acak Z di atas akan mendekati distribusi normal baku, N(0,1). Penentuan batas-batas kendali untuk diagram kendali S konvensional didasarkan pada peubah acak Z di atas. untuk kasus 3-sigma (dengan peluang kesalahan tipe I, α = 0,0027), maka peluang

$$P\{-3 < Z < 3\} = 0.9973$$

atau,

$$P\{-3 < \frac{S - c_4 \sigma}{\sigma \sqrt{1 - c_4^2}} < 3\} = 0,9973$$

$$P\{c_4 \sigma - 3\sigma \sqrt{1 - c_4^2} < S < c_4 \sigma + 3\sigma \sqrt{1 - c_4^2}\} = 0,9973$$

$$P\{B_5 \sigma < S < B_6 \sigma\} = 0,9973$$

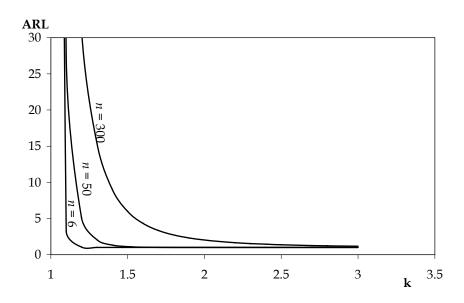
dimana,

$$B_5 = c_4 - 3\sqrt{1 - c_4^2} \tag{8}$$

$$B_6 = c_4 + 3\sqrt{1 - c_4^2} \ . \tag{9}$$

Dengan demikian batas kendali bawah (lower control limit - LCL) dan batas kendali atas (upper control limit - UCL) dari diagram kendali S konvensional adalah,

$$LCL = B_5 \sigma \tag{10}$$


$$UCL = B_6 \sigma \tag{11}$$

Tabel 1 menyajikan nilai rata-rata panjang bergerak (average run length - ARL) dari diagram kendali S konvensional ketika proses dalam kendali (simpangan baku prosesnya adalah $\sigma = \infty$) dan ketika proses di luar kendali (simpangan baku proses telah berubah dari σ = σ_0 ke σ = $k\sigma_0$) untuk α = 0,0027, k = 1(0,1)3 dan ukuran sampel, n = 6, 10, 50, 100, dan 300. Sebagai catatan, berapapun nilai 👧, nilai ARL-nya tetap tidak berubah. Gambar 1 mengilustrasikan nilai-nilai ARL untuk n = 6, 50, dan 300 yang ada pada Tabel 1.

Berdasarkan nilai-nilai ARL yang ada pada Tabel 1 dan Gambar 1 terlihat bahwa semakin besar ukuran sampel, maka nilai ARL-nya baik ketika proses dalam kendali maupun di luar kendali semakin besar. Khusus untuk ketika proses dalam kendali, nilai ARL-nya semakin mendekati nilai nominal 370,398 (=1/0,0027). Hal ini sejalan dengan prinsip dari diagram kendali S konvensional yang menggunakan teorema limit pusat pada saat penentuan batasbatas kendalinya.

	N						
k	6	10 50		100	300		
1,0	281,880	333,400	366,680	368,710	369,870		
1,1	79,046	71,606	27,343	13,263	3,279		
1,2	31,061	23,479	5,116	2,310	1,060		
1,3	15,418	10,481	2,076	1,213	1,000		
1,4	9,038	5,813	1,337	1,029	1,000		
1,5	5,978	3,763	1,107	1,003	1,000		
1,6	4,325	2,724	1,032	1,000	1,000		
1,7	3,347	2,139	1,009	1,000	1,000		
1,8	2,727	1,784	1,002	1,000	1,000		
1,9	2,312	1,556	1,001	1,000	1,000		
2,0	2,022	1,403	1,000	1,000	1,000		
2,1	1,812	1,297	1,000	1,000	1,000		
2,2	1,656	1,222	1,000	1,000	1,000		
2,3	1,537	1,168	1,000	1,000	1,000		
2,4	1,444	1,128	1,000	1,000	1,000		
2,5	1,371	1,098	1,000	1,000	1,000		
2,6	1,313	1,076	1,000	1,000	1,000		
2,7	1,266	1,059	1,000	1,000	1,000		
2,8	1,227	1,046	1,000	1,000	1,000		
2,9	1,195	1,036	1,000	1,000	1,000		
3.0	1.169	1.029	1.000	1.000	1.000		

Tabel 1. Nilai ARL untuk Diagram Kendali S Konvensional

Gambar 1. Nilai ARL untuk Diagram Kendali S Konvensional

4. DIAGRAM KENDALI S EKSAK

Dalam bagian ini akan dipaparkan pembentukan diagram kendali simpangan baku S eksak untuk proses yang berdistribusi normal dengan parameter simpangan baku σ diketahui. Berdasarkan distribusi dari peubah acak simpangan baku S yang dibahas pada Bagian 2, dapat dibentuk diagram kendali S eksak dengan peluang kesalahan tipe I, α . LCL dan UCL dari diagram kendali S eksak adalah memenuhi sifat-sifat berikut,

$$P\{LCL < S < UCL\} = 1 - \alpha$$

dengan,

$$P\{S \le LCL\} = F(LCL) = \alpha/2$$

dan,

$$P\{S \le UCL\} = F(UCL) = 1 - \alpha/2.$$

Dengan menggunakan fungsi distribusi dari peubah acak S, maka diperoleh

$$F(LCL) = \frac{1}{\Gamma(\frac{n-1}{2})} \int_{0}^{\frac{n-1}{2}CL^{2}} w^{\frac{n-1}{2}-1} e^{-w} dw = \frac{\alpha}{2}.$$

Misal

$$x_1 = \frac{n-1}{2\sigma^2} LCL^2 \tag{12}$$

Jadi x_1 merupakan solusi dari persamaan berikut

$$\frac{1}{\Gamma\left(\frac{n-1}{2}\right)} \int_{0}^{x_{1}} w^{\frac{n-1}{2}-1} e^{-w} dw = \frac{\alpha}{2}.$$

fungsi gamma tak-lengkap

Berdasarkan Persamaan (12), dapat diperoleh LCL untuk diagram kendali S eksak, yaitu

$$LCL = E_1 c$$

dimana,

$$E_1 = \sqrt{\frac{2}{n-1}x_1}$$
.

Dengan cara yang sama, dengan menggunakan fungsi distribusi dari peubah acak S, maka diperoleh

$$F(UCL) = \frac{1}{\Gamma(\frac{n-1}{2})} \int_{0}^{\frac{n-1}{2}\sigma^{2}} w^{\frac{n-1}{2}-1} e^{-w} dw = 1 - \frac{\alpha}{2}.$$

Misal

$$x_2 = \frac{n-1}{2\sigma^2}UCL^2. \tag{13}$$

Jadi x2 merupakan solusi dari persamaan berikut,

$$\frac{1}{\Gamma(\frac{n-1}{2})} \int_{0}^{x_{2}} w^{\frac{n-1}{2}-1} e^{-w} dw = 1 - \frac{\alpha}{2}.$$

fungsi gamma tak-lengkap

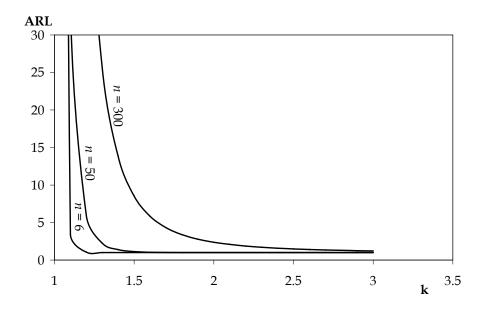
Berdasarkan Persamaan (13), dapat diperoleh UCL untuk diagram kendali S eksak, yaitu $UCL = E_2 \sigma$,

dimana,

$$E_2 = \sqrt{\frac{2}{n-1}} x_2 .$$

Tabel 2 menyajikan contoh nilai E_1 dan E_2 untuk n = 2(1)20. Nilai E_1 dan E_2 untuk berbagai n yang lainnya tersedia di penulis pertama makalah ini.

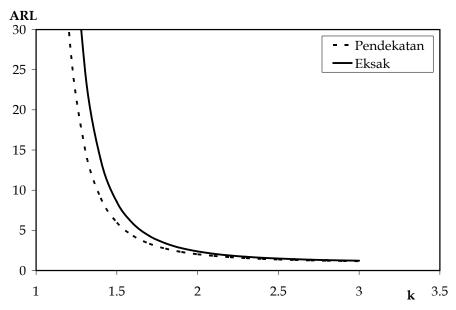
Tabel 2. Contoh Nilai E_1 dan E_2 untuk Ukuran Sampel, n = 2(1)20

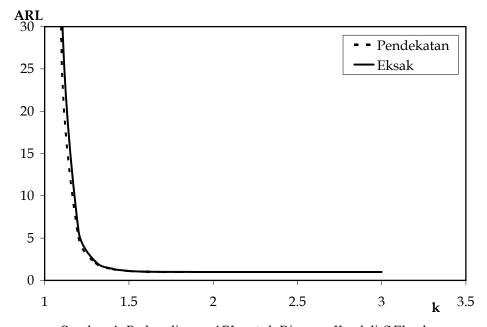

n	E_1	E_2	
2	0,0017	3,2052	
3	0,0368	2,5705	
4	0,0995	2,2826	
5	0,1626	2,1095	
6	0,2182	1,9911	
7	0,2656	1,9035	
8	0,3062	1,8354	
9	0,3411	1,7805	
10	0,3714	1,735	
11	0,3980	1,6966	
12	0,4215	1,6636	
13	0,4425	1,6348	
14	0,4614	1,6094	
15	0,4785	1,5868	
16	0,4941	1,5665	
17	0,5084	1,5481	
18	0,5215	1,5314	
19	0,5336	1,5162	
20	0,5449	1,5021	

Tabel 3 menyajikan nilai ARL dari diagram kendali S eksak ketika proses dalam kendali dan ketika proses di luar kendali untuk α = 0,0027, k = 1(0,1)3 dan ukuran sampel, n = 6, 10, 50, 100, dan 300. Berapapun nilai σ_0 , nilai ARL-nya tetap tidak berubah.

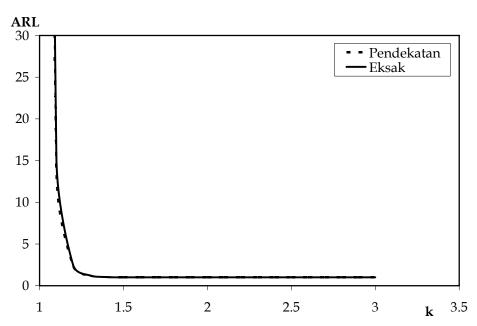
Tabel 3. Nilai ARL untuk Diagram Kendali S Eksak

k	N						
K	6	10	50	100	300		
1,0	370,398	370,398	370,398	370,398	370,398		
1,1	149,560	119,860	34,771	15,439	3,466		
1,2	56,400	36,874	5,932	2,477	1,066		
1,3	25,590	15,064	2,256	1,241	1,000		
1,4	13,820	7,762	1,393	1,034	1,000		
1,5	8,540	4,739	1,126	1,003	1,000		
1,6	5,844	3,275	1,038	1,000	1,000		
1,7	4,320	2,479	1,011	1,000	1,000		
1,8	3,390	2,008	1,003	1,000	1,000		
1,9	2,785	1,710	1,001	1,000	1,000		
2,0	2,373	1,514	1,000	1,000	1,000		
2,1	2,081	1,378	1,000	1,000	1,000		
2,2	1,866	1,283	1,000	1,000	1,000		
2,3	1,705	1,214	1,000	1,000	1,000		
2,4	1,582	1,164	1,000	1,000	1,000		
2,5	1,485	1,126	1,000	1,000	1,000		
2,6	1,408	1,098	1,000	1,000	1,000		
2,7	1,346	1,076	1,000	1,000	1,000		
2,8	1,295	1,060	1,000	1,000	1,000		
2,9	1,253	1,047	1,000	1,000	1,000		
3,0	1,219	1,038	1,000	1,000	1,000		


Gambar 2 mengilustrasikan nilai-nilai ARL untuk n = 6, 50, dan 300 yang ada pada Tabel 3. Berdasarkan nilai-nilai ARL yang ada pada Tabel 3 dan Gambar 2 terlihat bahwa semakin besar ukuran sampel, maka nilai ARL ketika proses di luar kendali semakin besar. Sedangkan ketika proses dalam kendali, nilai ARL-nya tetap pada nilai nominal 370,398 (=1/0,0027). Hal ini sebagai bukti bahwa diagram kendali S yang dibentuk sifatnya eksak.


Gambar 2. Nilai ARL untuk Diagram Kendali S Eksak

5. PERBANDINGAN ANTARA DIAGRAM KENDALI S EKSAK DAN KONVENSIONAL


Dalam bagian ini akan dilakukan perbandingan antara diagram kendali S eksak dengan diagram kendali S konvensional berdasarkan ukuran ARL ketika proses dalam kendali dan ketika proses di luar kendali untuk α = 0,0027, k = 1(0,1)3 dan ukuran sampel, n = 6, 25, dan 300. Perbandingan tersebut ditampilkan dalam Gambar 3, 4, dan 5.

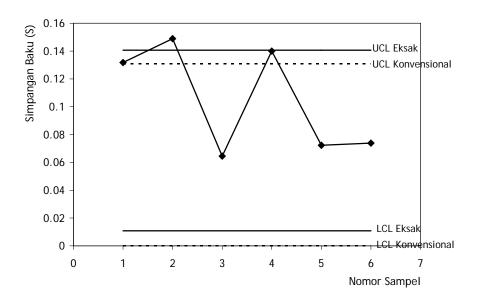
Gambar 3. Perbandingan ARL untuk Diagram Kendali S Eksak dan Konvensional untuk n = 6

Gambar 4. Perbandingan ARL untuk Diagram Kendali S Eksak dan Konvensional untuk n=50

Gambar 5. Perbandingan ARL untuk Diagram Kendali S Eksak dan Konvensional untuk n = 100

Berdasarkan Gambar 3, 4, dan 5, terlihat bahwa semakin besar ukuran sampel, maka baik untuk ketika proses dalam kendali maupun di luar kendali, nilai-nilai ARL dari diagram kendali S konvensional semakin mendekati nilai-nilai ARL dari diagram kendali S eksak. Hal ini sejalan dengan prinsip dari diagram kendali S konvensional yang menggunakan teorema limit pusat pada saat penentuan batas-batas kendalinya. Hal ini menunjukkan bahwa, ketika proses sebenarnya dalam kendali ataupun di luar kendali, diagram kendali S konvensional akan terlalu cepat mendeteksi bahwa proses sudah di luar kendali. Diagram kendali S konvensional terlalu sensitif (terlalu cepat memutuskan bahwa proses sudah di luar kendali) terhadap perubahan yang kecil dari simpangan baku proses. Hal ini terlihat ketika $k \leq 1$, selisih nilainilai ARL dari diagram kendali S konvensional dan eksak cenderung lebih besar dibandingkan ketika k > 1. Selisih tersebut semakin kecil ketika ukuran sampelnya semakin besar.

6. CONTOH NUMERIK


Berikut ini akan diberikan contoh penerapan dari diagram kendali S konvensional dan eksak untuk kasus σ diketahui. Bahan yang digunakan adalah data mengenai salah satu karakteristik kunci produk hinge rib (Datanya disajikan dalam Tabel 4, dengan σ = 0,0667). Produk hinge rib adalah salah satu produk yang dibuat oleh PT Dirgantara Indonesia. Produk tersebut merupakan bagian dari komponen sayap pesawat terbang. Nilai-nilai simpangan baku untuk setiap nomor sampel disajikan dalam kolom terakhir pada Tabel 4. Sedangkan gambar diagram kendali S konvensional dan eksaknya disajikan pada Gambar 6.

Nomor	Nomor Pengamatan					S
Sampel	1	2	3	4	5	8
1	518,894	519,143	518,886	518,902	519,125	0,1317
2	518,812	518,989	518,798	519,114	518,770	0,1489
3	518,842	518,982	518,940	518,940	518,839	0,0645
4	518,757	518,756	518,931	518,844	519,090	0,1400
5	518,967	518,930	518,993	518,893	518,808	0,0723
6	518,760	518,890	518,941	518,787	518,845	0,0739

Tabel 4. Data

Berdasarkan Gambar 6 terlihat bahwa nomor sampel 1 dan nomor sampel 4 berada di luar kendali dari diagram kendali simpangan baku S konvensional sedangkan menurut diagram

kendali simpangan baku S eksak masih dalam batas-batas kendali. Ini menunjukkan suatu contoh bukti bahwa diagram kendali simpangan baku S konvensional terlalu cepat untuk mendeteksi bahwa proses sudah di luar kendali.

Gambar 6. Diagram Kendali S Konvensional dan Eksak

7. KESIMPULAN DAN DISKUSI

Diagram kendali simpangan baku, S eksak yang dibangun dalam makalah ini khusus untuk kasus sampel berasal dari populasi yang berdistribusi normal dengan parameter simpangan baku, σ diketahui. Secara umum, jika diagram kendali S konvensional (yang banyak dimuat dalam buku-buku pengendalian proses statistis) digunakan dalam aplikasi maka diagram kendali ini akan terlalu cepat mendeteksi bahwa proses sudah di luar kendali. Untuk itu kami menyarankan untuk menggunakan diagram kendali S eksak yang ada dalam makalah ini. Permasalahannya adalah dalam menentukan nilai konstanta E_1 dan E_2 untuk menentukan batas-batas kendalinya. Penulis pertama dari makalah ini dapat menyediakan nilai-nilai konstanta tersebut.

Dalam makalah ini hanya dibahas diagram kendali S untuk parameter σ diketahui. Untuk kasus parameter σ tidak diketahui, penulis sedang mencoba untuk merancang suatu alat statistik yang mempunyai kemampuan yang lebih baik dibandingkan dengan yang sudah ada sebelumnya.

DAFTAR PUSTAKA

- [1]. Montgomery, D. C. (2001). *Introduction to Statistical Quality Control.* Fourth edition. John Wiley & Sons, Inc., New York.
- [2]. Hogg, R. V., dan Tanis, E. A. (2001). *Probability and Statistical Inference*. Sixth edition. Prentice Hall, Inc., New Jersey.