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ABSTRACT
Time series analysis generally referred to any analysis which involved to a time series data. In this
analysis, any of the continuous observation is commonly dependent. If the continuous observation is
dependable, then the values that will come are able to be forecasted from the previous observation
(Weir 2006). If the behaviour of coming time series are able to be exactly forecasted based on previous
times series, so it’s called deterministic time series. The objective of times series can be summarized
as to find the statistical model to describe the behaviour of the time series data and afterwards made
use of skilled statistical techniques for estimation, forecasting but also the controlling. The use of
time series analysis very much spread in various fields like biology, medical and many more that had
a purpose for forecasting. In this paper the recognition of concerning the Autoregressive Process
model AR (p), Moving Average Process MA (q), Autoregressive Moving Average ARMA (p,q),
Autoregressive Integrated Moving Average ARIMA (p,d,q) was given attention through the approach to
the Autocorrelation Function ACF and Partial Autocorrelation Function (PACF) theory plot.
Keywords: Autoregressive Process model AR (p), Moving Average Process MA (q), Autoregressive
Moving Average ARMA (p,q), Autoregressive Integrated Moving Average ARIMA (p,d,q).

1. Introduction
A time series is an ordered sequence of observations. Although the ordering is usually

through time, particularly in terms of some equally spaced time intervals, the ordering may also
be taken through other dimensions, such as space. Time series occur in a variety of fields as
such in agriculture, biology, medical, business, economics and much more. There are various
objectives for studying time series. They include the understanding and description of the
generating mechanism, the forecasting of future values, and optimal control of a system. The
intrinsic nature of a time series is that its observations are dependent or correlated, and the
order of the observations is therefore important. Hence, statistical procedures and techniques
that rely on independence assumption are no longer applicable, and different methods are
needed. The body of statistical methodology available for analyzing time series analysis.  In time
series the most crucial step are to identify and built a model based on the available data. These
steps require a good understanding of the process. Thus, in model identification, our goal is to
match patterns in the sample ACF and, k̂ and sample PACF, kk̂ with the known patterns of

the ACF, k and PACF, kk , for the ARMA models. In this paper we will illustrated the
identification ARIMA model through the plot of ACF and PACF theory.

2. Moving Average And Autoregressive Representations Of Time Series Process
In time series analysis, there are two useful representations to express a time series

process. They are Moving Average (MA) and Autoregressive (AR). Autoregressive process model of
order p is denoted as AR (p) and it is given by

tptptt aZZZ  
  11

or

ttp aZB )(
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where )1()( 1
p

pp BBB    and  tt ZZ .

And Moving Average process or model of order q and is denoted as MA (q) and it is given
by

qtqttt aaaZ    
11

or

tt aBZ )(

where )1()( 1
q

qBBB    .

A natural extension of the pure autoregressive and the pure moving average process is
the mixed autoregressive moving average process, which includes the autoregressive and
moving average as special cases. The general mixed ARMA (p,q) process is given by

tqtp aBZB )()(  

where
p

pp BBB   11)( and q
qq BBB   11)(

A homogenous nonstationary time series can be reduced to a stationary times series by
taking a proper degree of differencing. The homogenous nonstationary model below has been
referred to as the autoregressive integrated moving average model of order (p,d,q) and denoted
as the ARIMA (p,d,q).

3. The Autocovariance, Autocorrelation Functions and Partial Autocorrelation Function
For a stationary process }Z{ t we have the mean }Z{E t and variance

22   )Z(E)Z(Var tt which are constant, and the covariance )Z,Z(Cov st which are

functions only of the time difference st  . Hence, in this case, we write the covariance between

tZ and ktZ  as

)Z)(Z(E)Z,Z(Cov kttkttk   

and the correlation between tZ and ktZ  as

0


 k

ktt

ktt
k )Z(Var)Z(Var

)Z,Z(Cov






where we note 0  )Z(Var)Z(Var ktt . As function of k, k is called the autocovariance

function and k is called autocorrelation function (ACF). In time series analysis because they

represent the covariance and correlation between tZ and ktZ  from the same process,
separated only by k time lags.

In addition to the autocorrelation between tZ and ktZ  , we may want to investigate the

correlation between tZ and ktZ  after their mutual linear dependency on the intervening

variables 121  kttt Z,,Z,Z  has been removed. The conditional correlation

)Z,,Z|Z,Z(Corr kttktt 11   is usually referred  to as partial  autocorrelation in time
series analysis.

For the autocorrelation function for the residuals, the confidence limits for the ith
autocorrelation are

n/ritlimupper
i

k
k






1

0

2212 and the lower = -(upper limit)
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where n the number of observations in the series and kr = the kth autocorrelation.

For  the partial  autocorrelation function for the residuals, the upper limit for all partial
autocorrelation is n/2 and the lower limit n/2 .

4. Identification of Time Series Model from Acf and Pacf Plot
A large number of procedures has been suggested for identifying which model in the

autoregressive-moving average family of models is appropriate for a given time series data. In
times series analysis, there are two useful representations to express the suitable model by
using ACF and PACF plot. Below is the guide of the identifications of the model.

1. The First Order Autoregressive AR (1) Process
The first-order autoregressive process AR(1), we write

tt aZ)B(  
11 

or

ttt aZZ  11
 

The identification model for AR(1) from the view of theory plot is given by Figure 1.1

Figure 1.1 ACF and PACF plot for the AR (1) process: tt aZ)B(  
11 

2. The  Second-Order Autoregressive AR (2) Process

For the second-order AR(2) process, we have

tt aZ)BB(  2
211  or

tttt aZZZ   2211
 
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The identification model for AR (2) from the view of theory is given by Figure 1.2.

Figure 1.2 ACF and PACF plot for the AR (2) process:

tt aZ)BB(  2
211 

Figure 1.2 ACF and PACF plot for the AR (2) process: tt aZ)BB(  2
211 
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3. The First Order Moving Average  MA (1) Process

When )B()B( 11   , we have the first order moving average MA (1) process

t

t

a)B(
aaZ

1

111

1 



 



where }a{ t is a zero mean white noise with constant variance 2
a . The mean of }Z{ t



is ,)Z(E t 0 and hence )Z(E t .

The identification model for MA (1) from the view of theory plot is given by Figure 1.3.

Figure 1.3 ACF and PACF plot for the MA (1) process: tt a)B(Z 11 

4. The  Second-Order Moving Average MA (2) Process
For the second-order MA (2) process, we have

tt a)BB(Z 2
211  

The identification model for MA (2) from the view of theory plot is given by Figure 1.4
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Figure 1.4 ACF and PACF plot for the MA (2) process: tt a)BB(Z 2
211  

5. Autoregressive Moving Average ARMA (p, q) Processes
A natural extension of the pure autoregressive and the pure moving average processes is

the mixed autoregressive moving average process, which includes the autoregressive and
moving average processes as a special case. The process contains a large of parsimonious time
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series model that are useful in describing a wide variety of time encountered in practice. The
mixed autoregressive moving average (ARMA) process:

tqtp a)B(Z)B(  

where

,BB)B( p
pp   11 and q

qq BB)B(   11

The identification plot for the ARMA (1, 1) from the view of theory plot is given by Figure
1.5

Figure 1.5 ACF and PACF plot for the ARMA (1, 1) process: tt a)B(Z)B( 11 11   
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Figure 1.5 (Continued)

6. Autoregressive Integrated Moving Average ARIMA (p, d, q)Processes
A homogeneous nonstationary time series can be reduced to a stationary time series by

taking a proper degree of differencing. The autoregressive moving average models are useful in
describing stationary times series, so in this section, we discuss the use of differencing to built
a large class of time series models, autoregressive integrated moving average models, which are
useful in describing various homogeneous  nonstationary time series.
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Obviously, the stationary process resulting from a properly differenced homogenous
nonstationary series is not necessarily white noise as in tt

d aZ)B( 1 . More generally, the

differenced series t
d Z)B( 1 follows the general stationary ARMA (p, q).

To illustrate the model identification, we consider the general ARIMA (p, d, q) model;

tqt
d

p a)B(Z)B)(B(   01

where the stationary AR operator )BB()B( p
pp   11 and the invertible MA

operator )BB()B( q
qq   11 share no common factors.

The identification plot for the ARIMA (1, 1,0) from the view of theory plot is given by Figure
1.6

Figure 1.6 ACF and PACF plot for the ARIMA (1, 1, 0) process: tt aZ)B)(B(  11 1

The identification plot for the ARIMA (0,1,1) from the view of theory plot is given by Figure
1.7

Figure 1.7 ACF and PACF plot for the ARIMA (0, 1, 1) process: tt a)B(Z)B(  11
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The identification plot for the ARIMA (1,1,1) from the view of theory plot is given by Figure
1.8

Figure 1.8 ACF and PACF plot for the ARIMA (1, 1, 1) process: tt a)B(Z)B)(B(   111 1

From all the ACF and PACF plots, here we can summarize the results of the model
identification as mention below.

Table 1.1 Characteristics of theoretical ACF and PACF for stationary processes.
Process ACF PACF
AR (p) Tails off exponential decay or

damped sine wave
Cuts off after lag p

MA (q) Cuts off after lag q Tails off exponential decay or damped
sine wave

ARMA(p,q) Tails off after lag (q-p) Tails off after lag (p-q)

5. Forecasting and Conclusion
One of the most important objectives in the analysis of a time series is to forecast its

future values. Event if the final purpose of times series modeling is for the control of a system,
its operation is usually based on forecasting. After selection of the appropriate model that we
have discussed, we can do the forecasting part which is more useful in biology and other related
field. The accurate of the selection model giving us the good results of the prediction. Most
forecasting, results, however are derived from a general theory of linear prediction developed by
kolmogorov (1939, 1941). At this point, it is appropriate to say that model identification is both
a science and art. Through careful examination of the ACF and PACF of the times series, model
identification becomes the most interesting aspect of times series analysis. Most of the
researchers have more interest in recognizing the model identification before making the
prediction especially in biostatistics field.
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