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Abstract
The main aim of this paper is to investigate whether there is evidence to suggest that the underlying
trend of the pattern of Central England Temperature (CET) series varies over time. In addition, it is
also of particular interest in describing the structure of the data. For this paper, the data is a series
of 10-year averages of the CET series from 1663 to 2002. There is no doubt that a linear regression
trend in time with an MA (2) noise model describes the series adequately. The model suggests that
there is evidence of an overall warming trend, and generally, the temperature is estimated to rise
approximately 0.0252 C over a decade. Moreover, the estimated 95% confidence interval for the
slope is (0.01148, 0.03892).
Keywords: Central England Temperature; Box-Jenkins approach and regression models with ARMA

errors.

1. Introduction
The Central England Temperature (CET) series is probably the best known and is one of

the longest consistent records of temperature in existence for anywhere in the world. The CET is
representative of a roughly triangular area of the United Kingdom enclosed by Bristol,
Lancashire and London. There are many questions of interest, particularly in connection with
climate change, including whether there are any regularities in temperature fluctuations,
whether there is evidence of a consistent rise in temperature going beyond natural fluctuations,
etcetera. The most disputable question in current climate change research is over attribution of
recent climate change to either natural processes or human activities over the period of the
instrumental record. However, in this paper, the principal aims are to describe the structure of
the CET series, and to fit an appropriate time series model to the data in order to discuss
evidence of climate change over time as experienced in Central England.

The construction of this temperature record, which extends back to 1659, was the lifetime
work of Professor Gordon Manley. The series is now continually updated by the Hadley Centre
for Climate Prediction and Research, which is part of the Meteorological Office in United
Kingdom. The monthly mean surface air temperatures are expressed in degrees Celsius (C) for
the period from January 1659 up to present [4]. The data is discussed by Manley (1974) and
Parker et al. (1992). Manley draws attention to the fact that the data values prior to 1723 are
rather unreliable and are rounded to 0.5 C. In addition, values since 1974 have been adjusted
by 0.1 C - 0.2 C to allow for urban warming.

For this paper, the data is a series of 10-year averages of the CET series for the decades
1663-1672 to 1993-2002, which aims to allow a broad view of movements in temperature and a
simpler analysis. The data set is arranged in two columns. The first column gives the first year
of each decade and the second column corresponds to the average temperatures for each
decade. The average temperatures for each decade are calculated from yearly data by totalling
the corresponding annually values and dividing by 10. All analyses were performed using S-
Plus version 7.0.
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2. Preliminary Analyses

Time plot
As always in any preliminary stage of a time series analysis, producing a time plot to

identify the structure represented by the sequence of observations and understand the variation
in the series is crucial. The time plot of temperatures is shown in Figure 1. A quick visual
inspection of the graph shows that the temperatures have a general upward trend over 34
decades, ignoring short-term fluctuations. In addition, there is arguably a sign of cyclic pattern
with periods 40-50 years, though the amplitude changes apparently erratically. Besides, the
plot also indicates perhaps two ‘outliers’, i.e. values that seem out of line with the others, in
1693-1702 (8.288 C) and 1993-2002 (10.178 C). On the other hand, there is no justification
for discarding them as no evidence suggests that these observations were incorrectly recorded.

Further detailed scrutiny of the plot might reveal the CET record has some turning
points. The horizontal line shows the average temperature in Central England for the period
from 1663 to 2002. Undeniably the decadal values after the 20th century have been higher than
before. The series has a lower mean level and possibly a downward trend in the early years,
followed by a period of stability, though irregular oscillations are obvious, and ends with an
apparent rising trend. It is natural to suppose that a linear or quadratic trend is latent in the
structure, though the latter is rather unlikely.
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CET series in 10-year running means from 1663-2002

The horizontal line is the average temperature for this period.

Figure 1. Time plot of the CET series.

Estimation of trend
It is important to note that for simplicity, it is assumed that the CET series is non-

seasonal. Furthermore, seasonality is also not apparent in Figure 1. In the absence of seasonal
component but only the presence of trend component and random noise component, fitting a
straight line or low order polynomial using least squares may be a choice to estimate the trend
in the series.

The results of fitting the simple linear and quadratic fits to the data are summarized in
Table 1. Table 1 indicates that a linear warming trend but not a quadratic trend is hidden in the
structure of the data. The estimated rate of rise in temperature per year is about 0.0024 C.
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Table 1. Estimated parameters for the linear and quadratic fits.

Coefficient Linear fit Quadratic fit
Value Standard error p-value Value Standard error p-value

Intercept 4.7736 0.9259 < 0.001 26.5298 19.1657 0.1762
Linear term 0.0024 0.0005 < 0.001 -0.0215 0.0210 0.3151

Quadratic term - < 0.001 < 0.001 0.2645

3. Time Series Analyses
There are many classes of time series models in the literature, but for this paper, the

focus is on using Box-Jenkins approach, i.e. fitting an autoregressive integrated moving average
(ARIMA) model, to describe and quantify the CET series. Besides, investigations on regression
models with ARMA errors were also carried out.

Box–Jenkins approach
Classical Box-Jenkins models assume that the time series is stationary. Loosely speaking,

a time series  ,...1,0, tX t is said to be stationary if it has statistical properties (e.g., the

mean and the variance) similar to those of the “time-shifted” series  ,,...1,0,  tX ht for
each integer h (Brockwell and Davis, 2002).

Stationarity can be examined from a time plot. It can also be detected from the
autocorrelation (ACF) plot. Specifically, an ACF plot with very slow decay suggests non-
stationarity. In other words, a time series is stationary if the ACF has very few significant spikes
at very small lags and then cuts off drastically or dies down very quickly.

To ensure stationarity, Box and Jenkins recommend the differencing approach so that the
differenced observations resemble a realization of stationary time series. Box and Jenkins
(1976) developed a methodology for fitting ARMA models to differenced data. These are known
as ARIMA models. The Box-Jenkins methodology consists of a four-step iterative procedure, i.e.
tentative identification, estimation, diagnostic checking and forecasting. However, since
forecasting is not of any concern in this paper, only the first three steps will be iteratively
performed to search for a satisfactory model.

Model identification
Visual inspection of the time plot suggests that trend component might present in the

series. Also, according to the above preliminary analysis, the linear term is significant,
suggesting the CET series is non-stationary. On the other hand, examination of the correlogram
of the CET record does not give indication of lack of stationarity as the sample autocorrelations
decay to zero after lag 2. In other words, there are two obvious spikes (except at lag zero), and
the rest are essentially zero. Moreover, the plot of sample ACF shows a slight amount of positive
autocorrelation. Thus, there are reservations whether to difference the original series. In other
words, it is not entirely obvious whether the CET series is stationary or not. Perhaps the series
is short, consists of only 34 observations, and does not have a reasonable stable form of non-
stationarity, so there is no definitive or obvious pattern of non-stationary emerges in the
correlogram.

It has to be recognised that differencing has its limitations, working only for considerably
stable forms of non-stationarity. Differencing tends to introduce negative correlation. If the
series initially shows strong positive autocorrelation, then a non-seasonal difference will reduce
the autocorrelation and perhaps even drive the lag 1 autocorrelation to a negative value. If the
lag 1 autocorrelation is zero or even negative, then the series does not need further
differencing. If the lag 1 autocorrelation is -0.5 or more negative, the series may be
overdifferenced [3].

Assuming that the CET series is non-stationary, it appears as though one differencing
operation is sufficient to transform the series into stationarity with no apparent trend. But,
there is a pattern of changes of sign from one observation to the next in the time series plot of
the differenced data, possibly suggesting the signs of overdifferencing. Furthermore, the sample
ACF of the differenced series confirms that the series is overdifferenced as there is a negative
spike at lag 1 that is close to 0.5 in magnitude. However, differencing that yields a slightly
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overdifferenced series is expected as the CET series shows a slight amount of positive
autocorrelation.

If the ACF of the differenced series displays a sharp cutoff and/or the lag 1
autocorrelation is negative – i.e. if the series appears slightly "overdifferenced" – then consider
adding an MA term to the model [3].

The sample ACF of the differenced series suggests that a moving average process of order
1 is an appropriate model for the lag 1 differences. Thus, an initial attempt would be to fit an
ARIMA (0,1,1) for the original data (or ARMA (0,1) for the differenced series). Conversely, the
sample partial autocorrelation plot of the differenced data indicates the possible suitability of an
AR (1) model for the differences as the sample partial autocorrelation cuts off beyond lag 1.

The extensive and major tools used in this identification phrase, i.e. correlograms of the
autocorrelation and partial autocorrelation functions, do not provide any definitive answer but
throw some light on some possible number of parameters to be estimated.

Model fitting 1, selection and validation
Several plausible models were fitted and compared in order to obtain a ‘best’ model that

reflects the structure of the series. First, two models, i.e. ARIMA (1,1,0) and ARIMA (0,1,1) with
a constant term, were fitted based on the indications as to order provided by the plots of sample
autocorrelation and sample partial autocorrelation of the differenced data. The results are
summarized in Table 2. On comparing the Akaike Information Criterion (AIC), residual mean
squares and the log-likelihood of the fitted models, the preferable model obviously is the ARIMA
(0,1,1) as it has smaller AIC and residual mean squares values but larger log-likelihood value.

Table 2. Fitted ARIMA (1,1,0) and ARIMA (0,1,1) models.
Model: ARIMA (1,1,0) Value Model: ARIMA (0,1,1) Value

AR (1)
(standard error) -0.5162 (0.1541) MA (1)

(standard error) -0.7790 (0.1281)

Constant
(standard error) 0.0363 (0.0358) Constant

(standard error)
0.0295
(0.0146)

AIC 22.43 AIC 20.32
Log-likelihood -8.22 Log-likelihood -7.16

Residual mean squares 0.0954 Residual mean squares 0.0878

Basic diagnostics from the fitted models, i.e. using plot of standardized residuals,
autocorrelation function of the residuals and the p-values for Ljung-Box statistic, give no
grounds to question the adequacy of the models. Overall, both are adequate models. However,
the ARIMA (0,1,1) is a little better than the ARIMA (1,1,0).

Overfitting was carried out to check whether adding extra parameters in the MA model is
worthwhile. The overfitted models, i.e. ARIMA (0,1,2) and ARIMA (1,1,1) with a constant term,
have a larger AIC value and there is no abrupt change in the residual mean squares and log-
likelihood. Furthermore, overfitting produces an estimate of MA (2) for ARIMA (0,1,2) that is
easily consistent with the parameter being zero. On the other hand, for ARIMA (1,1,1), the
estimated AR (1) is 0.1982 and its standard error is 0.1941. Hence, ARIMA (0,1,1) is still
preferable in terms of parsimony. Parsimonious means choosing the model that has the fewest
parameters and greatest number of degrees of freedom among all models that fit the data.

There is indication from the correlogram in the model identification stage that the original
series might be in a form of stationarity, which means that the series should not be differenced
at all before fitting any model. As there is reservation about non-stationarity of the original
series, further investigations were carried out to search for ARMA models that may fit the
original series. The plots of sample autocorrelation and sample partial autocorrelation of the
original data suggest that some possible models for the original series are ARMA (1,0) and
ARMA (0,2). Thus, both models were fitted with a constant term. By checking these models,

1 The model fitting in S-Plus was done by using the MASS library function arima which fits an
ARIMA model of specified order by maximum likelihood, using a full likelihood based on the
assumption of normality.
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ARIMA (0,1,1) is still the ‘best’ model since their residual mean squares and AIC are larger and
the log-likelihood is smaller compared to ARIMA (0,1,1). Moreover, diagnostics from the fit of
ARMA (1,0) to the original series show evidence against this model as some of the p-values of
the Portmanteau test are small. Thus, assuming the CET series is non-stationary and fitting the
ARIMA model is a sensible option.

Regression models with ARMA errors
Time series models can include a regression-type dependence on one or more covariates.

The regression variables may simply be a constant (intercept) term, a deterministic function of
time, dummy variables to model outliers, or lagged values of another time series. The arima
function can use the optional argument xreg to specify covariates. If a xreg term is included, a
linear regression (with a constant term if include.mean is true) is fitted with an ARMA model
for the error term.

It is clearly seen in Figure 1 that a trend may be present in the data. Moreover, in Section
2.2., it has been demonstrated that a linear trend can be fitted to the data by least squares,
suggesting that the CET series is non-stationary. However, a straight line would be too simple
to represent the average-over-a-few-decades behaviour of the temperature data. Accordingly,
another possibility to modelling the data would be to fit regression models with ARMA errors
using the xreg argument of arima.

To begin with the model building process, it is reasonable to consider fitting a linear time
trend to the data with low order ARMA errors, e.g., a simple linear regression model with an AR
(1) noise and a simple linear regression model with an MA (1) residuals. Table 3 summarizes the
AIC, log-likelihood and residual mean squares values for nine fitted models.

Table 3. AIC, log-likelihood and residual mean squares values for various ARMA models
for the residuals.

Model for the residuals AIC Log-likelihood Residual mean squares
(1,0) 17.34 -4.67 0.07700
(0,1) 17.56 -4.78 0.07753
(1,1) 19.09 -4.55 0.07642
(1,2) 17.94 -2.97 0.06873
(2,1) 19.95 -3.97 0.07370
(2,0) 18.40 -4.20 0.07477
(0,2) 17.27 -3.63 0.07197
(3,0) 19.07 -3.54 0.07163
(0,3) 17.47 -2.74 0.06779

By checking the parameter estimates for all models and taking into account the statistics
shown in Table 3, ARMA (1,2), ARMA (0,2) and ARMA (0,3) models for the residuals are equally
good. However, it is found that ARMA (0,2) or MA (2) model for the residuals has the smallest
value of the AIC statistic. Furthermore, MA (2) is more parsimonious than the other two. Also,
there are no problems arise in the diagnostics check for this model. Hence, there is reason in
favour of MA (2) model for the residuals.

Lastly, a quadratic trend plus MA (2) for the noise model, which is intended to investigate
whether the hidden structure in the CET series is quadratic, was fitted. The results suggest that
the underlying trend is probably a linear time trend as the estimated linear term is not
significantly different from zero.

4. Results
In general, differencing and Box-Jenkins approach shows that one moving average

parameter is necessary and sufficient to yield an effective but still parsimonious model of the
process. The fitted model for the process is as follows:

0295.0779.0 11   tttt XX  (1)
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where tX and t are the observation and innovation at time t respectively. The estimated

variance of t is 0.0878. The constant in the ARIMA (0,1,1) model represents the mean of the
differenced series, as there are no autoregressive parameters in the model, and therefore the
linear trend slope of the original series. In other words, the constant represents the rate of rise
in temperature per decade. The estimated coefficient for time effect is approximately 0.0295,
implying that the rate of rise in temperature per decade is about 0.0295 C or equivalently
0.00295 C per year.

On the other hand, the regression method suggests the following model:
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where tX is the observation at time t, t is the innovation at time t and 2̂ is the

estimate of 2 . Model (2) suggests that the rise in temperature per decade is roughly 0.0252
C. In other words, model (2) supports a possible warming trend over years as the linear term or
slope is significantly different from zero.

To describe the structure of the data adequately and understand the underlying process,
model (2) is recommended, though not definitive, since it has a lower AIC value than model (1).
However, both models do give similar results concerned with the evidence of climate change.
The estimated 95% confidence bounds for the slope are 0.0252 1.96(0.007), demonstrating
that a significant increasing trend in the temperature of Central England during the years
1663-2002.

5. Conclusions
This paper is mainly concerned with the Central England Temperature record. The

original aims, to describe the structure and understand the variation in the data, and to
discuss evidence of change in the CET series over time on the basis of a simple but concise
model, were successfully achieved.

Graphical exploration shows that the Central England has experienced roughly 3 different
periods, i.e. cooling, stability and warming from 1663 up to 2002. Assuming seasonality is
absent in the series, an ARIMA (0,1,1) model with a constant term was fitted and there is
evidence that this model describe the data satisfactorily. Nevertheless, there are reservations
about the ARIMA (0,1,1) model with a constant term as Chatfield (1996) recommends that there
should be at least 50 observations in the input data with the aim of fitting any ARIMA models.
Furthermore, several regression models with ARMA errors were fitted and the results suggest
that a linear time trend plus MA (2) for the noise model is a better fit to the data. Thus, this
model is chosen to be the final model to describe the CET series.

As the topic of interest is climate change, the aim is concentrating on estimation of the
trend component. There is reason to believe that the deterministic trend takes a linear form.
Conclusion relating whether there is an overall warming trend is drawn based on model (2). The
model suggests that the data exhibits evidence of temporal dependence. In other words, there is
evidence of an overall warming trend, and in general, there is only slight increase in the
temperature over a decade, around 0.0252 C. The estimated 95% confidence interval for the
slope is (0.01148, 0.03892). In short, climate change is detected and there is evidence of an
increase in the temperature in the CET series.
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