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Abstract
Over the past year, a significant amount of research has explored the logistic regression models for
analyzing correlated categorical data. In these models, it is assumed that the data occur in clusters,
where individuals within each cluster are correlated, but individuals from different clusters are
assumed independent. A commonly used in modeling correlated categorical univariate data is to
assume that individual counts are generated from a Binomial distribution, with probabilities vary
between individuals according to a Beta distribution. The marginal distribution of the counts is then
Beta-Binomial. In this paper, a generalization of the model is made allowing the number of
respondent m, to be random. Thus both the number units m, and the underlying probability vector
are allowed to vary. We proposed the model for correlated categorical data, which is generalized to
account for extra variation by allowing the vectors of proportions to vary according to a Dirichlet
distribution. The model is a mixture distribution of multinomial and Dirichlet distribution, and we
call the model as the beta-binomial multivariate model.
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1. Introduction
The independence assumption of standard logistic regression (LR) for binary data may not hold,
and this non-independence will lead to a variance that is greater than binomial variability. The
phenomenon would be indicative of overdispersion in binary data. The consequence of this
overdispersion is that the confidence interval of the estimate is narrowing, so statistical
hypothesis will always be rejected. The beta-binomial (BB) regression model is an alternative
model to handle overdispersion in binary data analysis. The BB model is an extension of the
traditional LR model by including the correlation parameter between binary responses.
However, beta-binomial model is appropriate for overdispersion modeling from cluster of
univariate binary responses. Fortunately, in multivariate case, where binary responses from
each subunit within clusters can be classified into 1, 2, …, C categories, the beta-binomial
model is not appropriate anymore. A significant amount of research has explored the use of
regression models for analyzing correlated categorical data. In these models, it is assumed that
the data occur in clusters, where elements within each cluster (or subunit) are correlated, but
elements from different clusters are independent.

Unlike for continuous multivariate data, where the multivariate normal plays a central
role, no convenient multivariate distribution for correlated discrete data is readily available.
Hence researchers have been pursuing ways to define regression models that build joint
probability from either marginal and/or conditional probabilities (Gange, 1995). Much of this
work has been developed specifically for clustered multivariate binary responses – see
Pendergast, et al. (1993). Tallis (1962) proposed the use of the generalized-multinomial model
for dependent multinomial. This model is generalized to account for extra variation by allowing
the vectors of proportions to vary according to Dirichlet distribution. Wilson and Koehler (1988)
used the generalized-Dirichlet multinomial model to account for extra variation. The model
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allows for a second order of pairwise correlation among subunit, a type of assumption found
reasonable in some biological data, Kuper and Haseman (1978).

In this paper a generalization of the model is made allowing the number of respondents
m, to be random. Thus both the number of units m, and the underlying probability vector are
allowed to vary. The model presented here are an extension of beta-binomial model, where the
binomial distribution from that model is replaced by multinomial distribution, and the beta
distribution is replaced by Dirichlet distribution. This model is known as the Dirichlet-
multinomial model, and more specific, we call this model as the beta-binomial multivariate
model. Section 2 outlines the beta-binomial model. Section 3 discusses the properties of the
beta-binomial multivariate model. An application of the beta-binomial multivariate model will be
discussed in Section 4.

2. The Beta-Binomial Model
The beta-binomial model, proposed originally by William (1975) and later applied by Crowder
(1978) in a similar situation, assume that (1) individual level of interest reflects the outcome of a
series of independent responses and can be characterized by the binomial distribution with
parameter p, which we denote by P(X = x|n, p); and (2) the values of p are distributed across the
population according to a beta distribution, denoted by g(p).

The mixture distribution of the behavior of interest, denoted P(X = x|n), is obtained by
weighting each P(X = x|n, p) by the likelihood of that value of p occurring, g(p). This is formally
denoted by
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where B() is a beta function. The mean and variance of the beta binomial distribution are given
by E(X) = n/( + ) and var(X) = n( +  + n)/( + )2( +  + 1), respectively.

The widespread use of the beta-binomial model is ascribed to the ubiquitous nature of
heterogeneous count data, its ability to account for binomial overdispersion, and its predictive
ability. Although all attributions are true, the beta-binomial model has gained widespread use
mainly because integration of the binomial frequency function with respect to the beta density
yields a closed-form marginal distribution.

3. Extension of the Beta-Binomial Model
The beta-binomial multivariate model is an extension of the beta-binomial model. This model
results when we assume that (1) the individual-level behavior of interest reflects of outcomes of
a series of independents responses, and can be characterized by the multinomial distribution
with parameter vector p, which we denote by P(X = x|n, p), and (2) the values of p are
distributed across the population according to a Dirichlet distribution, denoted by g(p).

The mixture distribution of the behavior of interest, denoted by P(X = x|n), is obtained by
weighting each P(X = x|n, p), by the likelihood of that value of the vector p occurring (i.e., g(p)).
This is denoted by

( | ) ( | , ) ( )P n P n g d  X x X x p p p (2)

More formally, we should note that since the elements of any p, of length k, sum to 1, the
integration is actually performed with respect to the k – 1 variables p1, p2, …, pk-1, where the

integration limits are [0, 1], [0, 1 – p1], …, [0,
2
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 ], respectively.

In order to derive the mixture distribution associated with a multinomial response
process at the individual level and Dirichlet heterogeneity, we must solve the following integral:
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(3)

This is done in the following manner:
(1) Combine terms and move all non-pj terms to the left of the integral sign. This gives us
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(4)

(2) We therefore have to solve the definite integral
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The trick is to transform the terms to the right of the integral sign into a known probability
density function.

(3) Looking closely at this, we see that its structure mirrors the density of the Dirichlet
distribution with parameter aj + zj (j = 1, …, k); all that is missing is a
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    term. We can therefore write our expression for P(X = x) as
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(4) As the integrand is a Dirichlet pdf, the definite integral, by definition, equals 1, and we
therefore write the equation as
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This is called the Dirichlet-multinomial model or we call this model as the beta-binomial
multivariate (BBM) model.

3.1. Mean and Variance of the Beta-Binomial Multivariate
The mean of the BBM can easily be derived through conditional distribution. To do so, we
evaluate

 ( ) |E E E   pX X p

where  Ep denotes expectation with respect to the distribution of the vector p. Conditional on
p, X is distributed multinomial, and the mean of the multinomial distribution is np; therefore
E(X) = E(np). Since n is scalar constant, this is equivalent to E(X) = nE(p). As the latent vector p
has a Dirichlet distribution, and we know that the mean of the Dirichlet distribution is E(X) =
a/S, with E(Xj) = aj/S. It follows that the mean of the beta-binomial multivariate is

 ( ) , with j
j

nanE E X
S S
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The derivation of the variance-covariance of the beta-binomial multivariate is more
complex and we therefore present the result without derivation:
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This can be re-written as:

  `
` `cov ,

1
j j

j j j j

a a S nX X n
S S S
 
        

(9)

where `j j  is the Kronecker delta, defined as
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Let p be the mean vector of the Dirichlet distribution with j-th element /jp a S . We
therefore have
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and can therefore express the variance-covariance of the beta-binomial multivariate in matrix
form as

 var( ) Diag `
1

S n n
S
       

X p pp (10)

3.2. Estimating Model Parameters
In order to apply the BBM model, we must first develop estimates of its parameter vector a, from
the given sample data. There are two methods that can be used to estimate the parameter of the
model: maximum likelihood and method of moments. Let xi be the vector of response ith (i = 1,

2, …, N) across the k groups, and ni the number of category responses (
1

k
i ijj
n x


 ); xij denotes

the number of times outcome j occurs in ni independent trials.
For maximum likelihood method, by definition likelihood function is the joint density of

the observed data. Assuming the observations are independent, this is the product of the BBM
probabilities for each xi. The log-likelihood function is therefore

LL(a|data) =  
1

ln | ,
N

i i
i

P n


   X x a (11)

Using the standard numerical optimization software, we find the value of the parameter vector a
that maximizes this log-likelihood function; this is the maximum likelihood estimate of a.

For the case of ni = n  i, another approach to estimating the parameters of the BBM
model is the method of moments (Johnson and Kotz, 1969). Let us denote the sample mean
vector by x , the jth element of which is

1

1 N

j ij
i

x x
N 

  , for j = 1, …, k

Equating the sample mean vector with its population counterpart, we have

j
j

na
x

S
 (12)

Given an estimate of S, it follows that
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We therefore need an estimate of S. Let us denote the sample variance of Xj by 2
js .

Equating this with its population counterpart, we have
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From (12) we have / /j jx n a S . Substituting this into (13), we have
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Solving this for S, we get
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Hardie and Fader (2001) showed the easier way to estimating the parameters of the BBM
model through the variance-covariance of the BBM model (see (10)). Looking closely at that
expression, we see that it is (S + n)/(S + 1)  the variance-covariance matrix of the multinomial
distribution compute with p . This leads to the following procedure for developing an estimate of
S.

4. Numerical Example
To illustrate the use of BBM model, in this case we used the data in estimating behavior of
succeeding of college students in Bandung Islamic University at 1998 (Hajarisman, et al., 1998,
and Hajarisman (1998)). The sample was a cluster sample, where classes are clusters or
subunit. The population of interest will be restricted to student from Department Statistics,
Bandung Islamic University, and the responding number of cluster is 15. In this case, we just
look at two of the clusters, where the first cluster is a student who takes a math class and the
second cluster is a student who takes an English class. Table 1 shows the data of succeeding of
college students, where one margin is sex, and the other margin is succeeding of the student
when he/she take the math class and English class.

For illustrative purpose, in our paper present is a 2  2 categorical table with one margin
being sex of the student and the other margin response to a succeeding of the student who take
some classes, success or fail. This response was a series of classes who it was taken by student.
And it is of interest to know if these succeeding differ across categories of student, sex being
one category. We have then four cross categories with cell numbers respectively 1, 2, 3, 4
corresponding to pair (female, fail), (male, fail), (female, success), and (male, success). Thus the
first cell corresponding to female who have been failed in math class (for the first panel data),
cell 4 are male who have been succeed in math class, etc.

Table 1. Data of succeeding of college students

Cluster
Sex

Math Class English Class
Fail Success Total Fail Success Total

Female 27 211 238 60 178 238
Male 25 145 170 37 133 170

52 356 408 97 311 408

For the data in first cluster (math class), the probability is
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and for in second cluster (English class), the probability is
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The model of interest is the independence model, where sex and succeeding of college
students are independent. To find the estimator of the parameter, we used the maximum
likelihood methods so we need the score function and higher-order derivatives of the log-
likelihood function with respect to S. For this model the maximum likelihood estimator for S is
78.9, with estimator for the cell probabilities of success and the expectation of Xj (E(Xj)),
respectively, can be seen on Table 2.

Table 2. Estimator for the cell probabilities of success and the expectation of Xj (E(Xj))

Cluster
Sex

Math Class English Class
Fail Success Fail Success

Female 0.082 (33.456) 0.472 (192.576) 0.127 (51.816) 0.512 (208.576)
Male 0.069 (28.152) 0.377 (153.816) 0.075 (30.600) 0.286 (116.688)

Note: the expectation value for Xj is in the bracket.

From the estimator for cell probabilities of success we can see that the ratio of 1.18 of
female versus male, and a ratio of 5.76 of female that have been succeed in math class, and a
ratio of 5.46 of male who have been succeed in math class. For English class we can see that
the ratio of 1.69 of female versus male, and a ratio of 4.03 of female that have been succeed in
math class, and a ratio of 5.46 of male who have been succeed in math class 3.81. Based on
these results we can see that the chance of male student succeeding in math class is almost the
same as female student. However, the chance of male student in English class is smaller than
female student.

The variance-covariance matrix of the beta-binomial multivariate model for first cluster
(math class) and second cluster (English class) is given by

 (1)

  178.805   -13.381   -91.536   -73.112
  -13.381   159.717   -80.974   -64.676

var
  -91.536   -80.974   619.625  -442.422
  -73.112   -64.676  -442.422   583.959

 
 
 
 
 
  

X

and

 (2)

  275.658   -23.682  -163.248   -90.307
  -23.682   172.487   -96.406   -53.331

var
 -163.248   -96.406   620.856  -367.629
  -90.307   -53.331  -367.629   507.712

 
 
 
 
 
  

X

5. Discussion and Extension
The Dirichlet distribution provides a convenient model for describing variation among vectors of
proportions since it has relatively simple mathematical properties. The Dirichlet-Multinomial
model has been studied by Mosimann (1962). Brier (1980) used the model to analyze sample
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proportions obtained from a single two-stage cluster sample. Koehler and Wilson (1986)
extended some of Brier’s results to analyze vectors of proportions obtained from several two-
stage cluster samples. In arguing for this methodology there is a question to be discussed: with
this model why used maximum likelihood as an estimation procedure?

Brier (1980) in the original paper used method of moments. However Brier does not cover
either differing cluster sizes or non-response. Method of moments is very messy when one tries
to generalize to these situations. However with maximum likelihood estimation procedure in the
most general situation is fairly straightforward, and assuming we have no sparse cells or
disproportionately large clusters the asymptotic of the direct maximum likelihood estimators
can be established.

Then, we know that any probability modeling effort is the assumption that the observed
individual-level behavior is the realization of a random process with density f(x|), which has
unknown parameter(s) . By assuming a particular distribution for , we are able to derive an
aggregate-level model without specific knowledge of any given individual’s latent parameter(s).

In many cases, however, we are interested in estimating a given individual’s latent, . This
may be because we wish to rank the individuals on the basis of their true underlying behavioral
tendency or because we wish to forecast their behavior in a future period. In either case, the
challenge is to make inferences regarding , given the individual’s observed behavior x. In order
to address this problem, Hardie and Fader (2001) make used of Bayes theorem.
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