
Statistika, Vol. 8 No. 2, 93 – 96 
Nopember 2008 

93 

Analyzing Pattern of Mutation in mtDNA 
Using Markov Chain 

 
Lira Adiyani, Sutawanir Darwis, and Achmad Saifuddin Noer 

Institut Teknologi Bandung, Indonesia 
Email: lyera_math@yahoo.com, sdarwis@math.itb.ac.id, noer@chem.itb.ac.id 

ABSTRACT 
Mutation in mtDNA becomes an interesting topic that needed to discuss. If someone has a mutation 
in his mtDNA, then it might be affect his health. Those effects could be some diseases or another 
variation that gives different characteristics. In study of mutation, there are two such things become 
the main problems: (1) does mutation occur dependently? and (2) what is the pattern? From the 
research (by 9 degrees of freedom χ2), DNA sequence shows a positional dependence. In addition, we 
can also see a positional dependence in mtDNA sequence clearly (position i-1, i, i+1 are dependent 
with i define as mutation) by sign test, which means, it is possibly that there is a pattern of mutation. 
This paper uses Markov chain to quantify the pattern and as results all bases will mutate if position 
i+1 is C or cytosine (±40%). Moreover, A, C, and G will mutate (become T) if position i-1 is A or 
adenine (54.5%).  
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1. Introduction 
Mutation could happen in mtDNA or nucleus DNA. To identify whether there is a mutation in 
human body, we compare the rCRS with their DNA. If there is one different base that makes the 
sequence’s changed, we call it as a mutation. From research using chi square, there is a 
positional dependence in DNA sequence, but we still don’t know yet what kind of dependencies 
that we have. That is why this paper will analyze it (quantify the pattern of mutation) and to 
answer it, Markov chain will be used.  

mtDNA has many characteristics, such as mutate 5-10 times faster than nucleus DNA; 
has a Hyper variable Region 1/HVR-1 (a region that most commonly mutate); and consist of 
16,569 bases/positions. From those positions, there are 360 positions that most able to change 
called HVR-1. So that, the analyzing process only done in HVR-1 or interval [16024, 16383]. To 
make counting and analyzing processes become easier, than HVR-1 is categorized to three 
positions, there are i-1, i, and i+1; which mutation is defined as position i (note: if i-1 or i+1 also 
mutate then i-1, i, i+1 will not be used). This paper uses data from gene bank and the total data 
is 9188 individual but only 8951 data is used because this paper only analyze base substitution 
mutation. 

2. Methods and Empirical Results  
Markov chain is one of stochastic process with a discrete parameter also discrete and finite 
state space (S = {0, 1,..., n}) that is: if a state is given then probability for one next state only 
influenced by current state. When by the time t the process is in state i, than this event can be 
written by tX i= and { , 0,1,...} is called Markov chain if:tX t =  

 

1 0 0 1 1 1{ | ,..., , } { | }t t t t t tP X j X i X i X i P X j X i+ − − += = = = = = =  
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Let X is a random variable with
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succession of state observed, then transition probability matrix, P, can be estimated by 
Maximum Likelihood Estimation with a likelihood function ( )n nL L P=  is 
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So, to find out a dependency level of nucleotides in position i-1 and i+1 in this base substitution 
mutation cases, it can be obtained from the optimal empirical transition probabilities or 

max ˆ{ : , {A,T,C,G}}ijP i j∈ . For instance, Table 1 shows the case for mutation from C to T 

where position i-1 doesn’t contains any significant information but cytosine will mutate become 
timine if position i+1 is filled with also cytosine with dependency level about 48.4 %. 

From Table 2, it seems that for all cases, dependency level of each base in position i-1 
cannot be calculated. It is completely match with Markov chain principle that the probability of 
a state is only influenced by one state before. As a consequence, if state i is given then state i-1 
is unknown. Also from Table 2, we can know most of all bases (A, T, C, and G) will mutate if i+1 
is filled with cytosine or C. The conclusion is supported by information contained on Table 3. 
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Table 1. Transition Probability Matrix (Mutation from C to T) 

i-1 i Total  i i+1 total 
  A T C G      A T C G   
A 169 4929 286842 88 292028  A 86 15 198 7 306 
  (0.001) (0.017) (0.982) (0.000)      (0.281) (0.049) (0.647) (0.023)   
T 39 1093 137243 22 138397  T 2058 5432 7250 233 14973 
  (0.000) (0.008) (0.992) (0.000)      (0.137) (0.363) (0.484) (0.016)   
C 67 7633 298743 5 306448  C 306399 133043 326284 35032 800758 
  (0.000) (0.025) (0.975) (0.000)      (0.383) (0.166) (0.407) (0.044)   
G 31 1318 77930 7 79286  G 46 11 64 1 122 
  (0.000) (0.017) (0.983) (0.000)      (0.377) (0.090) (0.525) (0.008)   
 
 

 
Table 2. Transition Probability Matrix (Twelve Mutation Cases) 

No Case n i-1 i+1 No Case n i-1  i+1 
1 T to A 36 - A / C (30.6%) 7 A to C 562 - C (92.5%) 
2 C to A 306 - C (64.7%) 8 T to C 12653 - C (47.3%) 
3 G to A 2418 - G (41.1%) 9 G to C 46 - G (45.7%) 
4 A to T 141 - C (58.2%) 10 A to G 2482 - C (46.9%) 
5 C to T 14973 - C (48%) 11 T to G 20 - C (45%) 
6 G to T 18 - C (55.6%) 12 C to G 127 - C (50.4%) 

 
 

Table 3. All Mutation Cases 

i i+1    
  A T C G    

A 
465 

(0.168) 
95 

(0.034) 
1194 

(0.433) 
1006 

(0.365) 2760   

T 
2094 

(0.138) 
5445 

(0.360) 
7342 

(0.485) 
251 

(0.017) 15132   

C 
5232 

(0.395) 
929 

(0.070) 
6514 

(0.491) 
586 

(0.044) 13261   

G 
647 

(0.246) 
163 

(0.062) 
1237 

(0.471) 
582 

(0.221) 2629   
 

To investigate a dependency level of base in position i-1, we categorized all data set into 
16 transitions shown on Table 4.  

 
Table 4. Transitions 

No i-1  i+1 No i-1 i+1 No i-1 i+1 No i-1 i+1 
1 A A 5 T A 9 C A 13 G A 
2 A T 6 T T 10 C T 14 G T 
3 A C 7 T C 11 C C 15 G C 
4 A G 8 T G 12 C G 16 G G 
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The aim of this categorization is to know what kind of bases that most able to fill position 
i by choosing the optimal probabilities. From these sixteen transitions, there is only one 
transition that fit with gene bank data set shown on Table 5; that is ATC.  

 
Table 5. Transition ATC 

i-1 
i 

i+1 A T C G 

A 
1139 3786 1711 305 

C 0.164 0.545 0.247 0.044 
 
It means, for all mutation to T (A to T, C to T, and G to T), base A, C, and G will mutate become 
T if position i-1 is filled with adenine and cytosine in position i+1, but for another nine cases, it 
still unknown the contain of i-1. A graphical presentation of diagram of the optimal transitions 
is shown on Figure 1. 
  
 

 
 

Figure 1. Diagram of Transition 
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