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ABSTRACT 
Since hard continuous optimization models contain more than one solution and even continuum 
solution, it is impossible to seek all the solution by using the existent optimization methods. 
Therefore, in this paper we introduce a co-joint deterministic and probabilistic approach which 
modifies a soft approach for solving hard continuous optimization models.  An algorithm of co-joint 
approach and several numerical experiments have been presented in this paper. The special 
numerical test results have shown that the co-joint approach is more effective than soft approach 
algorithm. Fortunately, we have found that the co-joint algorithm can be used to determine whether 
the optimization model is hard continuous optimization models or not. 
Keywords: Hard continuous optimization, Deterministic and Probabilistic Approach, Steepest Descent 
Method. 
2000 Mathematics Subject Classification: 90C29, 68Q10, 49M05 

1. INTRODUCTION 
In order to solve the daily life problem, normally a mathematician will firstly convert the 
problem into a mathematical models which might contain more than one solution or even 
continuum solution. Therefore, the mathematician will seek the best solution for the problem.  
There are several known methods which have been designed for obtaining the solutions of the 
optimization problems such as Newton’s method, steepest descent method, quasi-Newton 
method and others, but the said methods will obtain one solution for each searching if the right 
starting point is used. There are alot of mathematical models where its objective function is not 
differentiable at many points and there are many local or even infinite number of local minima 
as seeing in Example 1 and Example 2 of [5]. 
Xu and Ng (2006)[5] have introduced a method so-called soft approach for solving the above 
mentioned problems. In this paper, we will proposed a modification of their approach which can 
handle some of the disadvantages of their approach and to make this proposed method more 
attractive, we will introduce some idea obtained from deterministic as well as probabilistic 
approaches. 

2. OPTIMIZATION PROBLEMS 
The optimization problem to be considered in this paper is to find a good enough solution set of 
the no assumption about the objective function RRDf n →⊆:  subject to 

                            0≤)(xgi ,   mi ,...,1= .                                                                           (2.1) 

Traditionally, we would like to search an optimal solution fXx ∈*  where 
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                           { }mixgxX if ,...,,)(: 10 =≤= .                                                                    (2.2) 

We know that only problems with some good analytical structures can be solved properly. 
Therefore, we need to device a very good method which can be used to solve the optimization 
models with not good analytical structures as well as the good one as be seen in this paper. 

3. A XU-NG’S SOFT APPROACH 
In order to handle the time limit requirement for solving a larger class of optimization problems, 
a technique so-called soft approach has been introduced in (Xu and Ng, 2006) which can be 
summarized as follows. 
Algorithm 3.1 (Xu and Ng, 2006) 
Briefly, this algorithm consists of three stages as follows. 

Stage 1: 
Any descent method can be used for obtaining the solution. 

Stage 2: 
Determine the suitable taken number of samples. The solution obtained in stage 1 can 
be used as initial point for sampling. 

Stage 3: 
Select the good enough set like cone from the samples which have been taken in Stage 
2. 

In order to observe the capability of Algorithm 3.1, according to our reading of their paper, we 
implement this algorithm as given in the following algorithm. 
Algorithm 3.2 (Xu and Ng, 2006) 

1. Find ( )fXx int)( ∈0  uniformly, let 0=i  ! int means interior 

2. Select a direction d  uniformly over { }1=∈= dRdD n :  

3. Find two hit points )(iP and )(iQ  on ( )fXb  from )(ix  along d  and d− . ! ( )fXb  means 

boundary of fX . 

4. Choose )( 1+ix  uniformly by using  )( )()()()( iiii QPxx −+=+ μ1  
where μ  is a random variable distributed uniformly over [0,1]. 

5. 1+= ii :  go to Step 2 till necessary samples are obtained.♦ 

4. STEEPEST DESCENT APPROACH 
The classical steepest descent method which is designed by Cauchy (1847) ([1][2, Section 1]) 
can be considered among the most important procedures for minimization of real-valued 
function defined on nR . The steepest descent step size appeared in  

   kkkk dxx λ+=+1 ,          (4.1) 

with the )( kk xfd −∇= , and the step size kλ  is obtained using exact line search ([1] [2]) 

kk

kk
k Agg

gg
=λ ,           (4.2) 

where )( kk xfg ∇=  and )( kxfA 2∇= . The algorithm of the classical steepest descent is as 
follows. 
Algorithm 4.1 (Steepest Descent)  

Data : nRx ∈0 , R∈ε  , and RRf n →: . 

1. 0 k =  
2. )( kk xfd −∇=  

3. if ε≤kd  do 
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3.1. kx is the minimizer 
3.2. stop 

4. Solve
kk

kk
k Agg

gg
=λ , where )( kk xfg ∇=  and )( kxfA 2∇= . 

5. kkkk dxx λ+=+1  
6. if ε≤−+ kk xx 1  

then 

6.1. kx  is the minimizer 
6.2. stop 

else 
6.3. 1+= kk  

7. return.♦ 

5. DETERMINATION OF SAMPLE SIZE 
Suppose that S  is a sample set which contains at least one good enough solution with high 
probability. Let S  the cardinality of set S , denotes the number of sample points in set S . 

In our algorithm, S  the smallest number of necessary samples from which we can obtain the 
set of good enough solutions, is derived as follows.  
Suppose that the solution should be one of the top %k  alternatives with a probability not 
smaller than %q , then S  can be obtained by solving 

                             { } %%)( || qkGSP S =−−=≥∩ 111                                     (5.1) 

where G  is a set of good enough solutions [3]. 

For example if 1k = , and 99.99  q = , then by (5.1) the minimal number of samples is 

917
99991

11
=

−
−

=
%).ln(

%)ln(S , 

but normally we take 1000 instead.  

6. SEARCH DIRECTION  
Our search direction is determined by an integer { }mi ,...,1∈  in a unit vector defined by 

            
T

i

m
i

m
id ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

ππ 22 sincos)( ,   ( )mi ,...,1=                        (6.1) 

where  

                   { }SaaaaZam gn ≥++++∈= + K32:min                      (6.2) 

in which S  is described in Section 5, +Z  is a set of positive integers, and +∈Zng is the 

number of generation. But in our studies, we set the 3=gn  which means the searching process 

will end after third generation. 

The vector )( id , ( )mi ,...,1=  is used to generate a sample point which belongs to S as describe in 
next section.  
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7. SAMPLING TECHNIQUE 

Suppose that in 2-dimensional case, starting with the point )(0x , we wish to generate a set of 
four (=m) points denoted by ♦ one for each direction d, and from each of these points ♦ we 
generate other four (=m) points denoted by • and for the next generation, the same procedure is 
carried out. Therefore for three generations, starting with )(0x , we obtain  84  4  4  4 32 =++  
points as shown in Fig. 7.1. 
 

 
Figure 7.1 

 

Starting with point )(),( 001 xx = , for m = 4, our mesh points which are denoted by its indices for 
each generation are given as follows. 

First generation : ( )11, , ( )12, , ( )13, , ( )14,  

Second generation : ( )21, , ( )22, , ( )23, ,..., ( )215, , ( )216,  

Third generation : ( )31, , ( )32, , ( )33, , ..., ( )328, , ( )329, , ( )330, ,..., ( )363, , ( )364,  

Since, for example, m = 4, the points  ( )21, , ( )22, , ( )23, , ( )24,  are obtained by using the point 

represented by ( )11,  indices, in the direction ( )1d , ( )2d , ( )3d , ( )4d  respectively through the 

formula ( ) ( ) ( )ii dxx += 112 ,,    ( )4321 ,,,=i . 

For obtaining all the points produced by the method visualized in the Fig. 7.1 detaily, the 
following algorithm can be used. 

Sample( +∈ Znmng ,, , mxnRd ∈ ; xnSRx∈  ) 

This procedure calculates the S  number of sample points where  

1
1

−
−

=
m
mmS

gn )(
 



A Co-Joint Deterministic Search Direction … 

Statistika, Vol. 9, No. 2, Nopember 2009 

103

and m is the number of directions. In this procedure, gn  and d  are the input parameter, and 

x  is the input-output parameter. 

1. )(),( 001 xx =  
2. for g = 1 to gn  do 
    2.1. j = 1 

    2.2. for i = 1 to 1−gm  do 
           2.2.1. for k = 1 to m do 
                     2.2.1.1. ( ) ( ) )k(g,ig,j dxx += −1   
                     2.2.1.2. j = j+1 
3. return.♦ 
As alternative, we can use the followng algorithm for computing the sample points. 
Algorithm 7.1 (Alternative) 

Data : )(x 0 , +∈ Zn  

1. )(),( xx 001 =  
2. for j = 1 to n do 

    2.1. for i = 1 to jm  do 
           2.1.1. a = quotient (i÷m) 
           2.1.2. b = remainder (i÷m) 

           2.1.3. ( ) =j,ix  if b = 0 

                                 then ( ) ( )mj,a dx +−1   

                                 else ( ) ( )bj,a dx +−+ 11  
3. return.♦ 

8. A COJOINT APPROACH 
In order to device a method which can handle the structure of the objective function and contol 
the time needed for solving (depending on the sample size), beside contains the same ideas 
given in ([5]), our method so-called CA method which is obtained by combining the ideas from 
Xu-Ng’s approch ([5]), steepest decent method ([2]), deterministic and probabilistic approaches 
and also  some modifications of Xu-Ng’s algorithm, can be arranged in the three stages as 
follows.  

Stage 1  
     Obtain the solution point *x  by using the steepest descent approach (Algorithm 
4.1).  
Stage 2  
     Determine the needed taken number of samples using  

                           { } %%)( || qkGSP S =−−=≥∩ 111                              (8.1)   

where k  is the highest percentage, noted that the problem has been solved completely, 
q  is the probability that the sample which has been determined in the top %k  

solutions, fXG ⊆  is a set of good enough solutions, and S  is the cardinality of S.  

Stage 3  
     Use the uniform sampling algorithm for samples collection.  
Stage 4  
     Select the good enough set defined by  

                                          { }ε≤−= )()(: )(0xfxfxG                               (8.2)                          

from the samples collection in Stage 3.  
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The modified sampling algorithm which used in our CA method to replace the uniform sampling 
used by Xu and Ng (2006) in stage 3 have shown in Algorithm 8.1. 
Algorithm 8.1 (Stage 3) 

Data: nRx ∈)(0   is the solution from Algorithm 4.1 (Stage 1), the even S  is the needed 
number of samples. 
1. case true of  
    1.1. 1=n  ! Dimension 1 
           1.1.1. 1=i  
           1.1.2. 2÷= SS  

           1.1.3. while ( Si ≤ )  do 
                     1.1.2.1. 1=d ; 00010.=λ ! Within the domain 
                     1.1.2.2. dixx i λ±= )()( 0  
                     1.1.2.3. 1+= ii  
           1.1.4. Sx i →)(   
           1.1.4. stop 
     1.2. 2=n  ! Dimension 2 

            1.2.1. )...:min( SaaaZam gn ≥+++∈= + 2  ! the number of searches  

            1.2.2.
T

i

m
i

m
id ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛=
ππ 22 sincos)( ,   ( )mi ,...,1=  

            1.2.3. S = Sample ( nmng ,, , d ; ( )0x ) ! We also can use Algorithm 7.1 

            1.2.4. stop 
     1.3. default 
            1.3.1. write ”error in n”   
            1.3.2. stop ! n is not equal to 1 or 2 
2. check whether S satisfies (8.2) or not   
3. return.♦ 

9. SPECIAL TESTING EXAMPLES 
In order to observe the behaviour of both cojoint and soft methods for the objective function 
with the continuum solutions, we have used two examples which are given in [5], and the 
results for the comparison are given in Table 9.1. 
Example 9.1 : Find the minimum of 

( )

⎪⎩

⎪
⎨
⎧

=

≠
+=

00

0
1

1
2

x

x
x

xx
xf

/sin
)(  

in the interval [-2,2] . 

The minimizer is 737400 .)( −=x  with 466700 .)( )( −=xf . According to [5], it is enough to take 

1000 uniform samples from ],[ 22−=fX  for possibility that at least one point in G  is one of the 

top %1  alternatives with a probability not smaller than %.9999  in the samples set as refer to 
(5.1). 
In order to illustrate the effectiveness of their method ([5]), this problem has been solved 50 
times and got one good enough point each time.  

In our approach, when we take 1000 uniform samples from ],[ 22−=fX , we observe that at 

least 135 samples contained in G . 
Example 9.2 : Find the minimum of 
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2
2

2
1 501025010

21
21

 5 5
).().(

)sin()sin(
),(

−+−

+
−=

xxe

xx
xxf

ππ
 

in the feasible set given by 

( ){ }121101010 212121 ≥+≤−−≤×∈ xxxxxx ,:],[],[, . 

The minimizer is ).,.()( 5012076500 =x  with 6477610 .)( )( −=xf . According to ([5]), it is enough to 

take 9091 uniform samples from ],[ 22−=fX  for possibility that at least one point in G  is one 

of the top %.10  alternatives with a probability not smaller than %.99899  in the sample set as 
refer to (5.1). But in our studies, we take 9723 samples which take 21 search directions in 3 
generation searching process. 

In our approach, when we take 9723 uniform samples from ],[ 22−=fX , we observe that at 

least 3885 samples contained in G . 
The comparison of the results between our studies and ([5]) on both examples in this section is 
shown in Table 9.1. 
 

Table 9.1 : The numerical results for both methods 
Example Xu and Ng soft approach Ismail and Ling soft approach 

1 Take 1000 samples. 

Test and select 50 samples only as 
the good enough set 

{ }4101 −×≤−= *)()(: xfxfxG  

Take 1000 samples 

The good enough set contains 135 
samples 

{ }5105 −×≤−= *)()(: xfxfxG  

2 Take 9091 samples 

Test and select 50 samples only as 
the good enough set 

{ }050.*)()(: ≤−= xfxfxG  

Take 9723 samples 

The good enough set contains 3885 
samples 

{ }0050.*)()(: ≤−= xfxfxG  

 

10. OTHER NUMERICAL RESULT 
On other hand, we have tested the modified algorithm to some other test examples ([2][4])  as 
follows.  

1. ⎟
⎠

⎞
⎜
⎝

⎛+=
3

2xxxf sin)sin()( , ).( 340 =x  

2. 2121 32 xxxxf +=),( , ),( 550 =x  

3. 2
2

12121 4 xxxxxxf −+=),( , ),( 110 =x  
4. six hump camel back function 

4
2

2
221

6
14

1
2

121 44
3

124 xxxx
x

xxxxf +−−+−= .),( , ).,.( 90610 −=x  

5. Three hump camel back function 

      2
221

6
14

1
2

121 6
0512 xxx

x
xxxxf +−+−= .),( , ).,.( 90610 −=x  

6. Booth Function  
2

21
2

2121 5272 )()(),( −++−+= xxxxxxf , ).,.( 61400 =x  
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7. 
2

10
24

2
2

1

2
1

4
1

21
xxxxxxf ++−= .),( , ),( 110 −=x  

8. 2
2

2
21

23
22

3
121 62 )()(),( xxxxxxxxf +−+−= , ),( 110 =x  

9. Two-Dimension Function 
2

12
2

12221 250421 )]sin(.[])sin([),( xxxxcxxxf ππ −+−+−= , 20.=c , ),( 260 −=x  
10. Two-Dimension Function 

2
12

2
12221 250421 )]sin(.[])sin([),( xxxxcxxxf ππ −+−+−= , 50.=c , ),( 000 =x   

11. Two-Dimension Function 
2

12
2

12221 250421 )]sin(.[])sin([),( xxxxcxxxf ππ −+−+−= , 050.=c , ),( 110 −=x  

Since there are a few mistakes found in the algorithm proposed in a soft approach which is 
introduced in [5], we cannot implement such algorithm as willing by them. Therefore, in Table 
10.1, we can only display our results which are obtained by implementing our approach to the 
testing examples given in this section. 

Table 10.1 

Example The obtained number of good enough 
set. 

1 %.% 290100
1000
902

=×  

2 %% 100100
8420
8420

=×  

3 %% 100100
8420
8420

=×  

4 %% 100100
8420
8420

=×  

5 %% 100100
8420
8420

=×  

6 %% 100100
8420
8420

=×  

7 %% 100100
8420
8420

=×  

8 %.% 3894100
8420
7947

=×  

9 %% 100100
8420
8420

=×  

10 %% 100100
8420
8420

=×  

11 %% 100100
8420
8420

=×  

11. CONCLUSION 
By modified soft approach, we observe that the way of sampling is more effective compared to 
previous study on the method done by [5]. The good enough set G  selected by Xu and Ng ([5]) is 
not too good compared with the good enough set selected by our modified soft method as shown 
by Example 9.1 and Example 9.2. 
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We also have shown that our method can be used for solving eleven examples given in Section 
10, whereas the compared method cannot be used due to several mistakes found in the 
corresponding algorithm. 
Besides solving the optimization problems given in Section 10, our modified method still can 
determine whether the problems have the local minimum or not. 
According to the discussion given, and based on 13 testing examples, we can say that our 
method is superior to the soft approach proposed in [5].    
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