Arbovirus Detection of Adult Female Aedes aegypti for Dengue Surveillance: a Cohort Study in Bandung City, Indonesia

Lia Faridah, Savira Ekawardhani, Nisa Fauziah, Imam Damar Djati, Ramadhani Eka Putra, Kozo Watanabe


Dengue surveillance is an important activity to prevent dengue outbreaks. This activity becomes a significant challenge for the region with limited logistic capabilities. Developing a simple mathematical model to predict the possibility of dengue incidence provides a reliable early warning system. This study compared the correlation between vector (adult female Aedes aegypti) and arbovirus detection on a vector to dengue incidence, which generalized linear mixed models tested. The incidence of adult female Aedes aegypti and dengue fever cases were interpolated through third-power inverse distance weighting (IDW). A spatial correlation between female Aedes aegypti incidence and dengue incidence was obtained from polynomial regression. Collection sites were 16 villages in Bandung city, one of the significant dengue endemic areas in January–December 2017. A total of 8,402 mosquitoes of Aedes aegypti, Aedes albopictus, and Culex sp., with 17% belonging to Aedes aegypti as the subject of the dengue virus (DENV) infection test. Data analysis only showed a weak correlation between the numbers of adult female Aedes aegypti and dengue incidence. On the other hand, there is no correlation between positive dengue infection of vector and dengue incidence. This study highlights the importance of constant arbovirus surveillance and integrated surveillance methods on all possible dengue vectors to develop an early warning system for dengue incidence.


Aedes aegypti; arbovirus detection; dengue; Indonesia; surveillance

Full Text:



Kamal M, Kenawy MA, Rady MH, Khaled AS, Samy AM. Mapping the global potential distributions of two arboviral vectors, Aedes aegypti and Ae. albopictus under changing climate. PLoS One. 2018;13(12):e0210122.

World Health Organization. Vector-borne diseases [Internet]. Geneva: World Health Organization; 2020 [cited 2022 September 22]. Available from:

Alonso-Palomares LA, Moreno-Garcia M, Lanz-Mendoza H, Salazar MI. Molecular basis for arbovirus transmission by Aedes aegypti mosquitoes. Intervirology. 2019;61(6):255–64.

Vitale M, Lupone CD, Kenneson-Adams A, Ochoa RJ, Ordoñez T, Beltran-Ayala E, et al. A comparison of passive surveillance and active cluster-based surveillance for dengue fever in southern coastal Ecuador. BMC Public Health. 2020;20(1):1065.

Kraemer MUG, Sinka ME, Duda KA, Mylne AQN, Shearer FM, Barker CM, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife. 2015;4:e08347.

Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504–7.

Rahman S, Overgaard HJ, Pientong C, Mayxay M, Ekalaksananan T, Aromseree S, et al. Knowledge, attitudes, and practices on climate change and dengue in Lao People′s Democratic Republic and Thailand. Environ Res. 2021;193:110509.

World Health Organization. Dengue and severe dengue [Internet]. Geneva: World Health Organization; 2021 [cited 2021 June 1]. Available from:

Suwandono A. Dinamika dengue di Jawa Barat: sebuah pengantar. In: Suwandono A, editor. Dengue update: menilik perjalanan dengue di Jawa Barat. Suwandono A, editor. Jakarta: LIPI Press; 2019. p. 1–6.

Respati T, Raksanagara A, Djuhaeni H, Sofyan A. Spatial distribution of dengue hemorrhagic fever (DHF) in urban setting of Bandung city. GMHC. 2017;5(3):212–8.

Kosasih S, Zhi Qin W, Abdul Rani R, Abd Hamid N, Chai Soon N, Azhar Shah S, et al. Relationship between serum cytokeratin-18, control attenuation parameter, NAFLD fibrosis score, and liver steatosis in nonalcoholic fatty liver disease. Int J Hepatol. 2018;2018:9252536.

World Health Organization. Global strategy for dengue prevention and control, 2012–2020 [Internet]. Geneva: World Health Organization; 2012 [cited 2020 March 2]. Available from:

Jourdain F, Samy AM, Hamidi A, Bouattour A, Alten B, Faraj C, et al. Towards harmonisation of entomological surveillance in the Mediterranean area. PLoS Negl Trop Dis. 2019;13(6):e0007314.

Kesetyaningsih TW, Andarini S, Sudarto, Pramoedyo H. Determination of environmental factors affecting dengue incidence in Sleman district, Yogyakarta, Indonesia. Afr J Infect Dis. 2018;12(Suppl 1):13–25.

Oppenheim B, Gallivan M, Madhav NK, Brown N, Serhiyenko V, Wolfe ND, et al. Assessing global preparedness for the next pandemic: development and application of an Epidemic Preparedness Index. BMJ Glob Health. 2019;4(1):e001157.

Sunardi P, Kusnanto H, Satoto TBT, Lazuardi L. Prevalence of dengue virus transovarial transmission and DHF incidence rate in Grogol sub-district of Sukoharjo district. JMMR. 2018;7(2):101–7.

Rosa E, Dahelmi, Salmah S, Syamsuardi. Detection of transovarial dengue virus with RT-PCR in Aedes albopictus (Skuse) larvae inhabiting phytotelmata in endemic DHF areas in West Sumatra, Indonesia. Am J Infect Dis Microbiol. 2015;3(1):14–7.

Ndiaye EH, Diallo D, Fall G, Ba Y, Faye O, Dia I, et al. Arboviruses isolated from the Barkedji mosquito-based surveillance system, 2012–2013. BMC Infect Dis. 2018;18(1):642.

Caminade C, Ndione JA, Diallo M, MacLeod DA, Faye O, Ba Y, et al. Rift Valley fever outbreaks in Mauritania and related environmental conditions. Int J Environ Res Public Health. 2014;11(1):903–18.

Ochieng C, Lutomiah J, Makio A, Koka H, Chepkorir E, Yalwala S, et al. Mosquito-borne arbovirus surveillance at selected sites in diverse ecological zones of Kenya; 2007–2012. Virol J. 2013;10:140.

Campos M, Ward D, Morales RF, Gomes AR, Silva K, Sepúlveda N, et al. Surveillance of Aedes aegypti populations in the city of Praia, Cape Verde: Zika virus infection, insecticide resistance and genetic diversity. Parasites Vectors. 2020;13(1):481.

Aranda C, Martínez MJ, Montalvo T, Eritja R, Navero-Castillejos J, Herreros E, et al. Arbovirus surveillance: first dengue virus detection in local Aedes albopictus mosquitoes in Europe, Catalonia, Spain, 2015. Euro Surveill. 2015;23(47):1700837.

Merkel A. Climate Bandung [Internet]. London;; 2019 [cited 2020 April 12]. Available from:

Dinas Kesehatan Kota Bandung. Profil kesehatan kota Bandung 2014 [Internet]. Bandung: Dinas Kesehatan Kota Bandung; 2014 [cited 2022 July 20]. Available from:

Dinas Kesehatan Kota Bandung. Profil kesehatan kota Bandung 2017 [Internet]. Bandung: Dinas Kesehatan Kota Bandung; 2017 [cited 2022 August 1]. Available from:

Wu HH, Wang CY, Teng HJ, Lin C, Lu LC, Jian SW. A dengue vector surveillance by human population-stratified ovitrap survey for Aedes (Diptera: Culicidae) adult and egg collections in high dengue-risk areas of Taiwan. J Med Entomol. 2013;50(2):261–9.

Naish S, Dale P, Mackenzie JS, McBride J, Mengersen K, Tong S. Spatial and temporal patterns of locally-acquired dengue transmission in northern Queensland, Australia, 1993–2012. PLoS One. 2014;9(4):e92524.

Wijayanti SP, Porphyre T, Chase-Topping M, Rainey SM, McFarlane M, Schnettler E, et al. The importance of socio-economic versus environmental risk factors for reported dengue cases in Java, Indonesia. PLoS Negl Trop Dis. 2016;10(9):e0004964.

Telle O, Vaguet A, Yadav NK, Lefebvre B, Cebeillac A, Nagpal BN, et al. The spread of dengue in an endemic urban Milieu–the case of Delhi, India. PLoS One. 2016;11(1):e0146539.

Cheong YL, Leitão PJ, Lakes T. Assessment of land use factors associated with dengue cases in Malaysia using boosted regression trees. Spat Spatiotemporal Epidemiol. 2014;10:75–84.

Powell JR, Tabachnick WJ. History of domestication and spread of Aedes aegypti-a review. Mem Inst Oswaldo Cruz. 2013;108((Suppl 1)):11–7.


pISSN 2301-9123 | eISSN 2460-5441

Visitor since 19 October 2016: 

Free counters!

Global Medical and Health Communication is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.