Phylogenetic Analysis of Culex tritaeniorhynchus and Culex vishnui Vector of Japanese Encephalitis Virus

Raden Roro Upiek Ngesti Wibawaning Astuti, Raden Wisnu Nurcahyo, R.C. Hidayat Soesilohadi, Suwarno Hadisusanto, Budi Mulyaningsih

Abstract


Culex tritaeniorhynchus and Culex vishnui are medically essential mosquitoes that transmit the Japanese encephalitis (JE) virus. There is less information about the recording data and research due to genetic character differences among them. The objective of this study was to examine the genetic variation of Cx. tritaeniorhynchus and Cx. vishnui in 3 sites of Central Java using polymerase chain reaction randomly amplified polymorphic DNA (PCR-RAPD). The study was done in January to November 2017 in Pekalongan city, Pekalongan regency, and Semarang regency. Adult female mosquitoes collected by human bite method. DNA of ten Cx. tritaeniorhynchus samples and fifteen samples of Cx. vishnui purified using DNA extraction kit. Furthermore, PCR amplification was conducted with 5 RAPD primers (OPA 11, 12, 15, 16, and 20) and would run into 2% gel electrophoresis for 45 minutes. Cluster analysis was using MVSPTM software (version 3.1). The results showed 213 genetic characters of Cx. vishnui, while 142 characters shown by Cx. tritaeniorhynchus. The dendrograms showed three distinct groups of Cx. vishnui from 2 sites of Pekalongan and one site of Semarang, while Cx. tritaeniorhynchus showed two distinct groups, which were 1 group from Pekalongan and 1 group from Semarang. Low genetic similarity (<10%) shown Cx. vishnui from Pekalongan city and Pekalongan district, and there was no genetic similarity in Cx. tritaeniorhynchus from Pekalongan and Semarang. It concluded that the polymorphism of Cx. tritaeniorhynchus and Cx. vishnui reached 100%.

 

ANALISIS FILOGENETIK CULEX TRITAENIORHYNCHUS DAN CULEX VISHNUI VEKTOR VIRUS JAPANESE ENCEPHALITIS

Nyamuk Culex tritaeniorhynchus dan Culex vishnui memiliki peran penting di bidang medis terutama dalam penularan virus Japanese  encephalitis (JE). Sampai saat ini data dan riset tentang karakter genetik vektor JE masih sangat terbatas. Penelitian ini bertujuan menjelaskan variasi genetik Cx. tritaeniorhynchus dan Cx. vishnui di 3 lokasi di Jawa Tengah berdasar polymerase chain reaction randomly amplified polymorphic DNA (PCR-RAPD). Studi ini dilakukan dari bulan Januari sampai November 2017 di Kota Pekalongan, Kabupaten Pekalongan, dan Kabupaten Semarang. Metode human bite digunakan untuk koleksi nyamuk. Ekstraksi DNA nyamuk dilakukan pada 10 ekor Cx. tritaeniorhynchus dan 15 ekor Cx. vishnui menggunakan kit ekstraksi DNA. Selanjutnya, diamplifikasi dengan 5 macam primer RAPD (OPA 11, 12, 15, 16, dan 20), serta dielektroforesis pada 2% agar selama 45 menit. Analisis klaster dilakukan menggunakan program MVSPTM (versi 3.1). Ditemukan 213 dan 142 karakter genetik masing-masing pada Cx. vishnui dan Cx. tritaeniorhynchus. Analisis dendogram menunjukkan 3 grup yang berbeda untuk Cx. vishnui, sedangkan untuk Cx. tritaeniorhynchus terdapat 2 grup yang berbeda, yaitu 1 grup dari Pekalongan dan 1 grup dari Semarang. Similaritas genetik yang rendah (<10%) ditunjukkan Cx. vishnui dari Kota Pekalongan dan Kabupaten Pekalongan, bahkan tidak ada persamaan genetik pada Cx. tritaeniorhynchus dari Pekalongan dengan Semarang. Disimpulkan bahwa polimorfisme Cx. tritaeniorhynchus dan Cx. vishnui mencapai 100%.


Keywords


Analisis filogenetik; Culex tritaeniorhynchus; Culex vishnui; JE-vector; PCR-RAPD; phylogenetic analysis; vektor JE

Full Text:

PDF

References


World Health Organization (WHO). Japanese encephalitis [Internet]. 2015 December 31 [cited 2018 August 23]. Available from: http://www.who.int/news-room/fact-sheets/detail/japanese-encephalitis.

Erlanger TE, Weiss S, Keiser J, Utzinger J, Weidenmayer K. Past, present, and future of Japanese encephalitis. Emerg Infect Dis. 2009;15(1):1–7.

Liu W, Gibbons RV, Kari K, Clemens JD, Nisalak A, Marks F, et al. Risk factors for Japanese encephalitis: a casecontrol study. Epidemiol Infect. 2010;138(9):1292–7.

Kementerian Kesehatan Republik Indonesia. Kemenkes canangkan imunisasi cegah radang otak Japanese encephalitis (JE) [Internet]. 2018 March 1 [cited 2018 March 30]. Available from: http://sehatnegeriku.kemkes.go.id/baca/rilis-media/20180301/2725083/kemenkes-canangkan-imunisasi-cegah-radang-otak-japanese-enchepalitis-je/.

Ompusunggu S, Hills SL, Maha MS, Moniaga VA, Susilarini NK, Wijaya A, et al. Confirmation of Japanese encephalitis as an endemic human disease through sentinel surveillance in Indonesia. Am J Trop Med Hyg. 2008;79(6):963–70.

Selvaraj I. Epidemiology of Japanese encephalitis and control measures [Internet]. [cited 2018 March 30]. Available from: https://www.powershow.com/view1/24a377-ZDc1Z/EPIDEMIOLOGY_OF_JAPANESE_ENCEPHALITIS_AND_CONTROL_MEASURES_powerpoint_ppt_presentation.

Centers for Disease Control and Prevention. Japanese encephalitis [Internet]. 2015 August 5 [cited 2018 March 30]. Available from: https://wwwnc.cdc.gov/travel/diseases/japanese-encephalitis.

Scientific Committee on Vector-borne Diseases, Centre for Health Protection, Department of Health of Hong Kong. Japanese encephalitis in Hong Kong [Internet]. December 2004 [cited 2018 March 30]. Available from: https://www.chp.gov.hk/files/pdf/vectors_of_japanese_encephalitis_in_hk_r.pdf.

Balai Besar Penelitian dan Pengembangan Vektor dan Reservoir Penyakit, Badan Penelitian dan Pengembangan Kesehatan, Kementerian Kesehatan Republik Indonesia. Pedoman pengumpulan data vektor (nyamuk) di lapangan: riset khusus vektor dan reservoir penyakit di Indonesia [Internet]. Salatiga: B2P2VRP, Balitbangkes, Kemenkes RI; 2017 [cited 2017 March 30]. Available from: http://www.b2p2vrp.litbang.kemkes.go.id/publikasi/download/59.

Tiwari P, Arya R, Tripathi LM, Bhattacharya SM, Srivastava VLM. Genetic variation among filarial species as detected by random amplified polymorphic DNA (RAPD). J Parasit Dis. 2004;28(2):73–8.

Sharma AK, Mendki MJ, Tikar SN, Chandel K, Sukumaran D, Parashar BD, et al. Genetic variability in geographical populations of Culex quinquefasciatus Say (Diptera: Culicidae) from India based on random amplified polymorphic DNA analysis. Acta Trop. 2009;112(1):71–6.

Astuti RRUNW, Handayani NSN, Hadisusanto S, Poerwanto SH. Genetic variability in geographical population of Culex quinquefasciatus Say (Diptera: Culicidae) from lymphatic endemic areas based on random amplified polymorphic DNA analysis. In: Kusumawinahyu WM, Hartanto DP, Firdausi R, Atsomya MF, editors. Proceedings 2nd Basic Science International Conference; 2012 February 24–25; Malang, Indonesia. Malang: Mathematics Department, Faculty of Sciences, Brawijaya University; 2012 [cited 2018 March 30]. p. B-65. Available from: https://repository.ugm.ac.id/id/eprint/91950.

Beroiz B, Ortego F, Callejas C, Hernandez-Crespo P, Castañera P, Ochando MD. Genetic structure of Spanish populations of Ceratitis capitata revealed by RAPD and ISSR markers: implications for resistance management. Span J Agric Res. 2012;10(3):815–25.

Failloux AB, Rhodain F. Importance of mosquito population genetic studies in medical entomology. Ann Soc Entomol Fr. 1999;35(1):1–16.

Indrawan M, Primack RB, Supriatna J. Biologi konservasi. Edisi revisi. Jakarta: Yayasan Obor Indonesia; 2007.

Frankham R, Ballou JD, Briscoe DA. Introduction to conservation genetics. Cambridge: Cambridge University Press; 2002.

Joyce AL, Melese E, Ha PT, Inman A. Population genetic structure of the Culex pipiens (Diptera: Culicidae) complex, vectors of West Nile virus, in five habitats. Parasit Vectors. 2018;11(1):10.

Kiliç S, Taşkin V, Doğaroğlu T, Doğac E, Taşkin BG. Genetic characterization of field population of Culex pipiens Linnaeus, 1758 (Diptera: Culicidae) sampled from Aegean region of Turkey. Turk J Zool. 2019;43(1):1–11.

Program for Appropriate Technology in Health (PATH). PATH’s Japanese encephalitis project: collaboration and commitment to protect asia's children [Internet]. Seattle: PATH; 2009 [cited 2018 March 30]. Available from: https://path.azureedge.net/media/documents/VAD_je_rpt.pdf.

Garjito TA, Widiarti, Anggraeni YM, Alfiah S, Tunggul Satoto TB, Farchanny A, et al. Japanese encephalitis in Indonesia: an update on epidemiology and transmission ecology. Acta Trop. 2018;187:240–7.

Garjito TA, Prihatin MT, Susanti L, Prastowo D, Sa’adah SF, Taviv Y, et al. First evidence of the presence of genotype-1 of Japanese encephalitis virus in Culex gelidus in Indonesia. Parasit Vectors. 2019;12(1):19.

Peng B. Diversity and population dynamics of mosquito vectors of Japanese encephalitis virus in a peri-urban and rural pig farm setting in Cambodia. Cambodian J Nat Hist. 2017;2017(1):128–33.

World Health Organization (WHO). Japanese encephalitis. 2019 May 9 [cited 2020 January 5]. Available from: https://www.who.int/news-room/fact-sheets/detail/japanese-encephalitis.

Japanese encephalitis vaccines: WHO position paper. Wkly Epidemiol Rec. 1998;73(44):337–44.

Kass B. Japanese encephalitis reported in Bali. 2018 November 11 [cited 2020 January 21]. In: Globe Medical [Internet]. Available from: https://www.globemedical.com.au/adelaide/interact/blog/japanese-encephalitis-reported-in-bali.html.

SAGE Working Group on Japanese encephalitis vaccines. Background paper on Japanese encephalitis vaccines [Internet]. 2014 October 1 [cited 2020 January 21]. Available from: http://www.who.int/immunization/sage/meetings/2014/october/1_JE_Vaccine_Background_Paper.pdf.




DOI: https://doi.org/10.29313/gmhc.v7i3.4051

pISSN 2301-9123 | eISSN 2460-5441


Visitor since 19 October 2016: 


Free counters!


Global Medical and Health Communication is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.