Effects of Pseudoephedrine Administration in Early Gestation on Female Mouse Heart
Abstract
The pseudoephedrine in pregnant women associated with an increased risk of hypertension and increased heart rate. These conditions force the heart to work harder and cause changes in heart structure, such as left ventricular hypertrophy due to an increase in the number and size of muscle cells. This study aims to determine pseudoephedrine administration in early pregnancy on mice hearts histological features. This study was pure in vivo with a completely randomized design conducted at Medical Biology Laboratory, Faculty of Medicine, Universitas Islam Bandung, from January to August 2017. Subjects were 18 pregnant adult female mice randomly divided into four groups. One control group and three test groups were given oral pseudoephedrine every day at 0.312 mg/24 hours (P1); 0.624 mg/24 hours (P2); and 1.248 mg/24 hours (P3) for seven days starting from the age of pregnancy on day 1. On the 18th day of gestational age, mice sacrificed, then the heart organ was processed into microscopic preparations and stained by Harris’ hematoxylin-eosin (HE) staining. Microscopic observations made using a microscope equipped with an optilab viewer with raster image 3. The results showed that the P3 group had a thicker left ventricular wall and significantly more heart muscle nuclei per mm3 than the control group (p<0.05). The results show that the administration of high doses of pseudoephedrine in early pregnancy can affect the structure of the heart.
PENGARUH PEMBERIAN PSEUDOEFEDRIN PADA MASA AWAL KEBUNTINGAN TERHADAP GAMBARAN HISTOLOGI JANTUNG MENCIT BETINA
Aktivitas vasokontriksi pseudoefedrin pada ibu hamil diduga kuat berkaitan dengan peningkatan risiko hipertensi dan denyut jantung. Kondisi tersebut memaksa jantung bekerja lebih berat dan dapat menyebabkan perubahan struktur jantung seperti hipertrofi ventrikel kiri akibat peningkatan jumlah dan ukuran sel-sel otot. Tujuan penelitian ini mengetahui pengaruh pemberian pseudoefedrin pada masa awal kebuntingan terhadap gambaran histologi jantung mencit betina. Penelitian ini merupakan eksperimental laboratorium murni in vivo menggunakan rancangan acak lengkap yang dilaksanakan di Laboratorium Biologi Medik, Fakultas Kedokteran, Universitas Islam Bandung dari bulan Januari hingga Agustus 2017. Subjek penelitian adalah 18 mencit betina dewasa bunting yang dibagi secara acak menjadi empat kelompok. Satu kelompok kontrol dan tiga kelompok uji yang diberi pseudoefedrin oral setiap hari dengan dosis 0,312 mg/24 jam (P1); 0,624 mg/24 jam (P2); dan 1,248 mg/24 jam (P3) selama 7 hari dimulai dari umur kebuntingan hari ke-1. Pada hari ke-18 umur kebuntingan, mencit dikorbankan kemudian organ jantung diproses menjadi sediaan mikroskopis dan dilakukan pewarnaan Harris’ hematoxylin-eosin (HE). Pengamatan sediaan mikroskopik dilakukan dengan menggunakan mikroskop yang dilengkapi dengan optilab viewer dengan image raster 3. Hasil penelitian menunjukkan kelompok P3 memiliki dinding ventrikel kiri yang lebih tebal dan jumlah nuklei otot jantung yang lebih banyak per mm3 secara signifikan dibanding dengan kelompok kontrol (p<0,05). Hasil menunjukkan bahwa pemberian pseudoefedrin dosis tinggi pada masa awal kehamilan dapat memengaruhi struktur jantung.
Keywords
Full Text:
PDFReferences
Ayad M, Costantine MM. Epidemiology of medications use in pregnancy. Semin Perinatol. 2015;39(7):508–11.
Daw JR, Hanley GE, Greyson DL, Morgan SG. Prescription drug use during pregnancy in developed countries: a systematic review. Pharmacoepidemiol Drug Saf. 2011;20(9):895–902.
Lupattelli A, Spigset O, Twigg MJ, Zagorodnikova K, Mårdby AC, Moretti ME, et al. Medication use in pregnancy: a cross-sectional, multinational web-based study. BMJ Open. 2014;4(2):e004365.
Thorpe PG, Gilboa SM, Hernandez-Diaz S, Lind J, Cragan JD, Briggs G, et al. Medications in the first trimester of pregnancy: most common exposures and critical gaps in understanding fetal risk. Pharmacoepidemiol Drug Saf. 2013;22(9):1013–8.
Kourtis AP, Read JS, Jamieson DJ. Pregnancy and infection. N Engl J Med. 2014;370(23):2211–8.
Mor G, Cardenas I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol. 2010;63(6):425–33.
Sachdeva P, Patel BG, Patel BK. Drug use in pregnancy; a point to ponder! Indian J Pharm Sci. 2009;71(1):1–7.
Mosley AT, Witte AP. Drugs in pregnancy: do the benefits outweigh the risks? US Pharmacist. 2013;38(9):43–6.
Werler MM. Teratogen update: Pseudoephedrine. Birth Defects Res A Clin Mol Teratol. 2006;76(6):445–52.
Yau WP, Mitchell AA, Lin KJ, Werler MM, Hernández-Díaz S. Use of decongestants during pregnancy and the risk of birth defects. Am J Epidemiol. 2013;178(2):198–208.
Solanki P, Yadav PP, Kantharia ND. Ephedrine: direct, indirect or mixed acting sympathomimetic? Int J Basic Clin Pharmacol. 2014;3(3):431–6.
Schlessinger A, Geier E, Fan H, Irwin JJ, Shoichet BK, Giacomini KM, et al. Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET. Proc Natl Acad Sci USA. 2011;108(38):15810–5.
van Gelder MMHJ, van Rooij IALM, Miller RK, Zielhuis GA, de Jong-van den Berg LTW, Roeleveld N. Teratogenic mechanisms of medical drugs. Hum Reprod Update. 2010;16(4):378–94.
Costantine MM. Physiologic and pharmacokinetic changes in pregnancy. Front Pharmacol. 2014;5:65.
Laccourreye O, Werner A, Giroud JP, Couloigner V, Bonfils P, Bondon-Guitton E. Benefits, limits and danger of ephedrine and pseudoephedrine as nasal decongestants. Eur Ann Otorhinolaryngol Head Neck Dis. 2015;132(1):31–4.
Lazzeroni D, Rimoldi O, Camici PG. From left ventricular hypertrophy to dysfunction and failure. Circ J. 2016;80(3):555–64.
Peraturan Kepala Badan Pengawas Obat dan Makanan Republik Indonesia Nomor 7 Tahun 2014 tentang Pedoman Uji Toksisitas Nonklinik secara In Vivo.
Farrell ET, Grimes AC, de Lange WJ, Armstrong AE, Ralphe JC. Increased postnatal cardiac hyperplasia precedes cardiomyocyte hypertrophy in a model of hypertrophic cardiomyopathy. Front Physiol. 2017;8:414.
Du Y, Plante E, Janicki JS, Brower GL. Temporal evaluation of cardiac myocyte hypertrophy and hyperplasia in male rats secondary to chronic volume overload. Am J Pathol. 2010;177(3):1155–63.
Xiao J, Li J, Xu T, Lv D, Shen B, Song Y, et al. Pregnancy-induced physiological hypertrophy protects against cardiac ischemia-reperfusion injury. Int J Clin Exp Pathol. 2014;7(1):229–35.
Yanamandra N, Chandraharan E. Anatomical and physiological changes in pregnancy and their implications in clinical practice. In: Chandraharan E, Arulkumaran SS, editors. Obstetric and intrapartum emergencies: a practical guide to management. Cambridge: Cambridge University Press; 2013. p. 1–8.
Soma-Pillay P, Nelson-Piercy C, Tolppanen H, Mebazaa A. Physiological changes in pregnancy. Cardiovasc J Afr. 2016;27(2):89–94.
Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol. 2013;14(1):38–48.
Redondo-Angulo I, Mas-Stachurska A, Sitges M, Tinahones FJ, Giralt M, Villarroya F, et al. Fgf21 is required for cardiac remodeling in pregnancy. Cardiovasc Res. 2017;113(13):1574–84.
Planavila A, Redondo-Angulo I, Villarroya F. FGF21 and cardiac physiopathology. Front Endocrinol (Lausanne). 2015;6:133.
Clemow DB, Dewulf L, Koren G, Mikita JS, Nolan MR, Michaels DL, et al. Clinical data for informed medication use in pregnancy: strengths, limitations, gaps, and a need to continue moving forward. Ther Innov Regul Sci. 2014;48(2):134–44.
Tan CMJ, Green P, Tapoulal N, Lewandowski AJ, Leeson P, Herring N. The role of neuropeptide Y in cardiovascular health and disease. Front Physiol. 2018;9:1281.
DOI: https://doi.org/10.29313/gmhc.v7i3.5276
pISSN 2301-9123 | eISSN 2460-5441
Visitor since 19 October 2016:
Global Medical and Health Communication is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.