Cogongrass (Imperata cylindrica L.) Ethanol Extract on Sepsis Mice Model Body Weight and Sepsis Score

Mirasari Putri, Neni Anggraeni, Raden Aliya Tresna M. D., Ghaliby Ardhia Ramli, Mia Kusmiati, Yuke Andriane, Eka Hendryanny, Abdul Hadi Hassan, Meta Maulida Damayanti, Nugraha Sutadipura, Mas Rizky A. A. Syamsunarno


Sepsis causes damage for cells, behavioral phenotype regression, and will end in most patients' death. The ethanol extract of cogongrass (Imperata cylindrica L.)  acts as an antioxidant. This study aimed to observe the effect of giving ECGR to body weight (BW) and the sepsis score of the sepsis mice model by lipopolysaccharide (LPS) induction. This study was an in vivo study with a randomized post-test controlled group design at the Animal Laboratory of Universitas Padjadjaran, 2018. We used 4 (four) groups of male mice (Mus musculus) DDY strains. Group 1 as a control, group 2: LPS 10 μL/kgBW, group 3, and 4: LPS+ECGR (90 mg/kgBW, and a dose of 115 mg/kgBW, respectively). This treatment was performed for two weeks. Every three days, we measured their body weight. After two weeks, group 2, group 3, and 4 were injected with LPS for 8 hours to induce sepsis. Next, we measured body weight and sepsis score using murine sepsis score (MSS). Then statistical analysis was performed using ANOVA and the Kruskal-Wallis test. The results showed no differences in body weight were found in the treatment groups (3 and 4) compared with control, suggesting no effect of ECGR in decreasing mice body weight. The sepsis score was more than 21 in groups treated with LPS (2, 3, and 4), suggesting LPS can induce sepsis. There was a slight decrease in scores in-group 3 and 4 compared with group 2. This study concludes that the treatment of ECGR caused no harm to body weight and slightly decreased sepsis score in the sepsis mice model.



Sepsis menyebabkan kerusakan sel, regresi fenotipe perilaku, dan akan berakhir kematian pada sebagian besar pasien. Ekstrak etanol akar alang-alang (Imperata cylindrica L.) (ECGR) berperan sebagai antioksidan. Penelitian ini bertujuan mengetahui pengaruh pemberian ECGR terhadap bobot badan (BB) dan skor sepsis pada mencit model sepsis yang diinduksi lipopolisakarida (LPS). Penelitian ini adalah penelitian in vivo dengan desain randomized post-test controlled group di Laboratoium Hewan Universitas Padjadjaran tahun 2018. Kami menggunakan 4 (empat) kelompok mencit jantan (Mus musculus) strain DDY. Kelompok 1 sebagai kontrol, kelompok 2 diinduksi LPS 10 μL/kgBB, kelompok 3 dan 4 diinduksi LPS+ECGR (dosis 90 mg/kgBB dan 115 mg/kgBB masing-masing). Perlakuan ini dilakukan selama 2 minggu. Setiap tiga hari dilakukan pengukuran bobot badan mencit. Setelah dua minggu, kelompok 2, kelompok 3, dan kelompok 4 diinjeksi LPS selama 8 jam untuk menginduksi sepsis. Selanjutnya, diukur bobot badan dan skor sepsis menggunakan murine sepsis score (MSS). Analisis statistik menggunakan ANOVA dan Uji Kruskal-Wallis. Hasil penelitian menunjukkan tidak terdapat perbedaan bobot badan pada kelompok perlakuan (3 dan 4) dibanding dengan kelompok kontrol yang menunjukkan ECGR tidak berpengaruh dalam menurunkan bobot badan mencit. Skor sepsis lebih dari 21 pada kelompok yang diinduksi LPS (2, 3, dan 4) menunjukkan LPS dapat menyebabkan sepsis. Terdapat sedikit penurunan skor pada kelompok 3 dan 4 dibanding dengan kelompok 2. Simpulan penelitian ini, pengobatan ECGR tidak membahayakan bobot badan dan mengakibatkan sedikit penurunan skor sepsis pada mencit model sepsis.


Alang-alang; bobot badan; body wight; cogongrass; murine sepsis score; reactive oxygen species

Full Text:



Munford RS. Severe sepsis and septic shock. In: Kasper DL, Fauci AS, Hauser SL, Longo DL, Jameson JL, Loscalzo J, editors. Harrison's principles of internal medicine. 19th edition. New York: McGraw-Hill Education; 2015. p. 1751–2.

Kumar V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol. 2020;89(Pt B):107087.

Murao A, Brenner M, Aziz M, Wang P. Exosomes in sepsis. Front Immunol. 2020;11:2140.

Hafidz A, Yuniati T, Solek P. Neopterin serum sebagai prediktor dini luaran perburukan pada sepsis neonatorum. GMHC. 2017;5(3):241–6.

Andrades MÉ, Morina A, Spasić S, Spasojević I. Bench-to-bedside review: sepsis - from the redox point of view. Crit Care. 2011;15(5):230.

Suryani YD, Prasetyo D, Hilmanto D. Fecal calprotectin in preterm infants sepsis with and without necrotizing enterocolitis symptoms. GMHC. 2018;6(3):188–92.

Umbarawan Y, Syamsunarno MRAA, Obinata H, Yamaguchi A, Sunaga H, Matsui H, et al. Robust suppression of cardiac energy catabolism with marked accumulation of energy substrates during lipopolysaccharide-induced cardiac dysfunction in mice. Metabolism. 2017;77:47–57.

Dhianawaty D, Ruslin. Kandungan total polifenol dan aktivitas antioksidan dari ekstrak metanol akar Imperata cylindrica (L) Beauv. (alang-alang). MKB. 2015;47(1):60–4.

An HJ, Nugroho A, Song BM, Park HJ. Isoeugenin, a novel nitric oxide synthase inhibitor isolated from the rhizomes of Imperata cylindrica. Molecules. 2015;20(12):21336–45.

Padma R, Parvathy NG, Renjith V, Rahate KP. Quantitative estimation of tannins, phenols and antioxidant activity of methanolic extract of Imperata cylindrica. Int J Res Pharm Sci. 2013;4(1):73–7.

Anggraeni N, Syamsunarno MRAA, Mukarromah GR, Zada A, Triatin RD, Pamela Y, et al. Low serum cholesterol in mice pre-treated with Imperata cylindrica L. after acute olive oil gavage. KnE Life Sci. 2017;2017:460–7.

Syamsunarno MRAA, Mukarromah G, Achadiyani A, Djunaedi D, Putri M. The use of ethanolic extract of cogongrass roots to reduce triglyceride absorption in male mice. In: Abdullah AG, Widiaty I, Abdullah CU, editors. Medical Technology and Environmental Health: Proceedings of the Medicine and Global Health Research Symposium (MoRes 2019); 2019 October 22–23; Bandung, Indonesia. Leiden: CRC Press/Balkema; 2020. p. 205–8.

Ge Y, Xu X, Liang Q, Xu Y, Huang M. α-Mangostin suppresses NLRP3 inflammasome activation via promoting autophagy in LPS-stimulated murine macrophages and protects against CLP-induced sepsis in mice. Inflamm Res. 2019;68(6):471–9.

Gupta S, Khajuria V, Wani A, Nalli Y, Bhagat A, Ali A, et al. Murrayanine attenuates lipopolysaccharide-induced inflammation and protects mice from sepsis-associated organ failure. Basic Clin Pharmacol Toxicol. 2019;124(4):351–9.

Hoogland ICM, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D. Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflamm. 2015;12:114.

Li J, Xia K, Xiong M, Wang X, Yan N. Effects of sepsis on the metabolism of sphingomyelin and cholesterol in mice with liver dysfunction. Exp Ther Med. 2017;14(6):5635–40.

Shrum B, Anantha RV, Xu SX, Donnelly M, Haeryfar SMM, McCormick JK, et al. A robust scoring system to evaluate sepsis severity in an animal model. BMC Res Notes. 2014;7:233.

Moraes PADD, Tannuri ACA, Rios LM, Paes VR, Gonçalves JDO, Serafini S, et al. Sepsis and cirrhosis in growing animals: description of a new experimental model and its pathological and immunological reliability. Clinics (Sao Paulo). 2020;75:e1858.

Hassan FI, Didari T, Baeeri M, Gholami M, Haghi-Aminjan H, Khalid M, et al. Metformin attenuates brain injury by inhibiting inflammation and regulating tight junction proteins in septic rats. Cell J. 2020;22(Suppl 1):29–37.

Wu M, Chen W, Yu X, Ding D, Zhang W, Hua H, et al. Celastrol aggravates LPS-induced inflammation and injuries of liver and kidney in mice. Am J Transl Res. 2018;10(7):2078–86.

Płóciennikowska A, Hromada-Judycka A, Borzęcka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2015;72(3):557–81.

Holst O. Structure of the lipopolysaccharide core region. In: Knirel YA, Valvano MA, editors. Bacterial lipopolysaccharides: structure, chemical synthesis, biogenesis and interaction with host cells. Vienna: Springer-Verlag/Wien; 2011. p. 21–39.

Tsolaki V, Makris D, Mantzarlis K, Zakynthinos E. Sepsis-induced cardiomyopathy: oxidative implications in the initiation and resolution of the damage. Oxid Med Cel Longev. 2017;2017:7393525.

Matsuno K, Iwata K, Matsumoto M, Katsuyama M, Cui W, Murata A, et al. NOX1/NADPH oxidase is involved in endotoxin-induced cardiomyocyte apoptosis. Free Radic Biol Med. 2012;53(9):1718–28.

Rathee P, Chaudhary H, Rathee S, Rathee D, Kumar V, Kohli K. Mechanism of action of flavonoids as anti-inflammatory agents: a review. Inflamm Allergy Drug Targets. 2009;8(3):229–35.


pISSN 2301-9123 | eISSN 2460-5441

Visitor since 19 October 2016: 

View My Stats

Free counters!

Global Medical and Health Communication is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.