Analisis Turunan dan Integral Fraksional Fungsi Pangkat Tiga dan Fungsi Eksponensial

Muhamad Deni Johansyah, Julita Nahar, Farid H. Badruzzaman

Abstract


Abstrak. Ide dari konsep turunan fraksional adalah bagaimana menentukan turunan yang berorde suatu bilangan pecahan (fraksional) yaitu bilangan rasional atau bahkan bilangan real. Dalam makalah ini dikaji tentang definisi, teorema, dan karakteristik serta contoh turunan fraksional pada fungsi pangkat tiga dan fungsi eksponen yang dikembangkan oleh matematikawan Riemann dan Liouville. Metode penelitian yang ditempuh adalah melalui studi literatur primer, yaitu dengan mengembangkan teori yang telah dikerjakan peneliti terdahulu, sehingga metode tersebut dapat diterapkan untuk penyelesain masalah yang dapat diaplikasikan dan dikembangkan secara lebih luas. Hasil dari makalah ini berupa analisis dari turunan fraksional fungsi pangkat sederhana dan fungsi eksponensial.

Keywords: turunan fraksional, fungsi pangkat tiga, fungsi eksponen

Abstract. The idea of the fractional derivative concept is how to determine the derivation with fractional order, that is a rational number or even a real number. In this paper, we examine the definitions, theorems, and the characteristics as well as fractional derivatives example of the cubic and exponential functions in which developed by mathematician Riemann and Liouville. This research is done by primary literature review, that is by developing the theory that has been done by the previous researcher, so that the method of problem solving can be applied and developed widely. The results of this paper are the analysis of fractional derivatives from simple-order and exponential functions.

Keywords: fractional derivatives, cubic functions, exponential functions


References


DAFTAR RUJUKAN

Adam Loverro, 2004, Fractional Calculus: History, Definitions, and Applications for the Engineer, University of Notre Dame.

A. McEachern, William. (2000). Ekonomi Makro: Pendekatan Kontemporer. Jakarta: Salemba Empat.

Bologna, Mauro. (2015). Short Introduction to Fractional Calculus. Chile: Universidad de Tarapaca. Available 20 May 2015. https://www.researchgate.net/profile/Mauro_Bologna2/publication/268373751_Short_Introduction_toFractional_Calculus/links/555c7b3508ae91e75e77931f.pdf

Foster, Bob. (2016). Determining Dynamic Market Equilibrium Price Function Using Second Order Linear Differential Equations. International Journal of Humanities and Social Science Vol. 6, No. 11, November 2016. https://www.ijhssnet.com/journals/Vol_6_No_11_November_2016/25.pdf

Gilarso, T. SJ. (2003). Pengantar ilmu Ekonomi Mikro. Penerbit Kanisius. Yogyakarta.

Iskandar Putong. (2008). Economics, Pengantar Mikro dan Makro. Jakarta Mitra Wacana Media.

Ishteva, Mariya Kamenova. (2005). Properties and Applications of the Caputo Fractional Operator (Thesis). Bulgaria: Department of Mathematics. Universitas Karlsrube (TH) February 2005. http://homepages.vub.ac.be/~mishteva/papers/Ishteva_MScThesis.pdf

Kimeu, Joseph. (2009). Fractional Calculus: Definitions and Applications (Thesis). Kentucky: The Faculty of the Department of Mathematics. Western Kentucky University. May 2009. http://digitalcommons.wku.edu/cgi/viewcontent.cgi?article=1115&context=theses

Kisela, Thomas. (2008). Fractional Differential Equations and Their Applications (Thesis). Brno, Czech Republic: Faculty of Mechanical Engineering Institute of Mathematics. BRNO University of Technology. https://www.researchgate.net/profile/Tomas_Kisela/publication/249993249_Fractional_Differential_Equations_and_Their_Applications/links/00b7d51e821756d8fb000000.pdf

McTier, Austin. (2016). Fractional Calculus Fundamentals and Applications in Economic Modeling (Thesis). Georgia: Georgia College and State University. 12 December 2016. https://www.gcsu.edu/sites/files/page-assets/node-808/attachments/mctier.pdf

Podlubny, Igor, 1999, Fractional Differential Equations, Technical University of Kosice, Slovakia, Academic Press

Salvatore, Dominick. (2004). Managerial Economics in a Global Economy 5 th ed, South Western. Australia.

Sugiarto (2002). Ekonomi Mikro Sebuah Kajian Komprehensif. Pt. Gramedia Pustaka Utama. Jakarta.

Tarasova, V. V dan Vasily, E. T. (2016). Economic Accelerator with Memory: Discrete Time Approach. Problems of Modern Science and Education. (ISSN 2304-2338). No. 36 (78). P. 37-42. DOI: 10.20861/2304-2338-2016-78-002. Submitted on 23 December 2016. Cornel University Library. https://arxiv.org/abs/1612.07913

Tarasova, Valentina. V dan Vasily. (2017). Economic Interpretation of Fractional Derivatives. Progress in Fractional Differentiation and Applications An International Journal. Volume 3, No. 1, 1-6(2017). Published online 1 January 2017. http://dx.doi.org/10.18576/pfda/030101

Tarasova, Valentina. V dan Vasily. (2016). Elasticity for Economic Processes with Memory: Fractional Differential Calculus Approach. Fractional Differential Calculus. Volume 6, Number 2 219–232. http://files.ele-math.com/articles/fdc-06-14.pdf

Tarasova, Valentina. V dan Vasily. (2016). Fractional Dynamics of Natural Growth and Memory Effect in Economics. Cornel University Library. Submitted on 29 December 2016. https://arxiv.org/ftp/arxiv/papers/1612/1612.09060.pdf

Tarasova, Valentina. V dan Vasily. (2016). Long and Short Memory in Economics: Farctional Order Difference and Differentation. International Journal of Management and Social Sciences 2016. Vol. 5. No. 2. P. 327-334. DOI: 10.21013/jmss.v5.n2.p10. Submmited on 23 December 2016. Cornel University Library. https://arxiv.org/abs/1612.07903

Xuru. (2006). Introductory notes on fractional calculus. 31 July 2006. http://www.xuru.org/downloads/papers/IntrFrac.pdf




DOI: https://doi.org/10.29313/jmtm.v16i2.3357

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Matematika

ISSN : 1412-5056 | E-ISSN 2598-8980  

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Indexed by: