Pembuktian Tentang Keterbatasan Operator Integral Fraksional Melalui Fakta Ukuran Lebesgue Di Ruang Morrey
Abstract
Dalam makalah ini akan diperlihatkan suatu pembuktian mengenai operator integral fraksional di ruang Morrey melalui ukuran Lebesgue . Meskipun gagasan pembuktiannya hampir sama dengan pembuktian yang dilakukan Chiarenza-Frasca, namun dalam menaksir I2 (x) untuk x ÎRn, akan digunakan fakta ukuran Lebesgue , persisnya melalui fakta , untuk setiap g >0.
Kata kunci: Ukuran Lebesgue, operator integral fraksional, ruang Morrey
Full Text:
PDF (Bahasa Indonesia)References
E. Nakai, Recent topics of fractional integrals, Departemen of Mathematics, Osaka Kyoiku University Kashiwara, Osaka 582-8582, Japan.
E.M. Stein, Singular integrals and differentiability properties of functions, Princenton University Press, Princenton, N.J, 1970.
E.M. Stein, Harmonic Analysis: real variable methods, orthogonality, and oscillatory integrals, Princenton University Press, Princenton, New Jersey, 1993.
. F. Chiarenza and M.Frasca, Morrey spaces and Hardy Littlewood maximal function, rend. Mat. 7, 273-279, 1987.
. G.B. Folland, Fourier analysis and its applications, Wadsworth & Brooks/Cole, Pacific Grove, CA, 1992.
. G. Gunwan and H. Gunawan, Keterbatasan Operator Riesz di Ruang Morrey, Jurnal Limits, Jurusan Matematika Institut Teknologi Surabaya, 2007.
. J.G. Cuerva and A.E. Gatto, Boundedness properties of fractional integral operators associated to non doubling measures, Mathematics Subject Classification, DePaul University, Spain, 1991.
. M. Loss and H. Elliot, Analysis, Graduate student in mathematics, volume 4, 2001
. R. Fefferman, Maximal functions in analysis, The University of Chicago REU, 2005.
DOI: https://doi.org/10.29313/jmtm.v7i1.3362
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Matematika
ISSN : 1412-5056 | E-ISSN 2598-8980
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Indexed by: