Barisan Modul Eksak dan Barisan Homomorfisma Modul Eksak
Abstract
This article explained sequence exact of R-module and R-module homomorphism and their relation. Module is generalized of vector space V over field F. If M module over ring R, usually denoted M R-module. Module sequence is defined as homomorphism sequence from module to another module.
R-Module sequence have exact property at a module, for example Mi, if kernel function from Mi to Mi+1 same with image function from Mi-1 to Mi. The set of all R-module homomorphisms from Mi to Mi+1 will be denoted HomR(Mi,Mi+1). HomR(Mi,Mi+1) is also module over ring which the same with Mi and Mi+1.
Full Text:
PDF (Bahasa Indonesia)References
Adkins, W. A. and Weintraub, S. H., (1992). Algebra Approach via Module Theory,
Springer – Verlag, New York.
Hungerford, T. W., (1974). Algebra, Springer – Verlag, New York.
Lang, S., (1993). Álgebra, Addison – Wesley Publishing Company, USA.
DOI: https://doi.org/10.29313/jmtm.v7i1.3364
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Matematika
ISSN : 1412-5056 | E-ISSN 2598-8980
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Indexed by: