Barisan Modul Eksak dan Barisan Homomorfisma Modul Eksak

Yanita Yanita

Abstract


This article explained  sequence exact of R-module and R-module homomorphism and their  relation.  Module is generalized of vector space V over field F.  If  M module over ring R, usually  denoted M R-module.  Module sequence is defined as homomorphism sequence from module to another module. 
R-Module sequence have exact property at a module, for example Mi, if  kernel function from Mi to Mi+1 same with  image function from Mi-1 to Mi.  The set of all R-module homomorphisms from Mi to Mi+1 will be denoted HomR(Mi,Mi+1).  HomR(Mi,Mi+1) is also module over ring which the same with  Mi and Mi+1.


References


Adkins, W. A. and Weintraub, S. H., (1992). Algebra Approach via Module Theory,

Springer – Verlag, New York.

Hungerford, T. W., (1974). Algebra, Springer – Verlag, New York.

Lang, S., (1993). Álgebra, Addison – Wesley Publishing Company, USA.




DOI: https://doi.org/10.29313/jmtm.v7i1.3364

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Matematika

ISSN : 1412-5056 | E-ISSN 2598-8980  

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Indexed by: