Klasifikasi Data Laporan Masyarakat pada Portal Layanan Aspirasi dan Pengaduan Online Masyarakat (Lapor!) dengan Metode Klasifikasi Naïve Bayes

Achmad Kurniansyah Thalib

Abstract


Layanan Aspirasi dan Pengaduan Online Rakyat (LAPOR!) merupakan salah satu program yang dicanangkan pemerintah guna menghimpun informasi seluasluasnya yang berupa kritik maupun saran dari masyarakat. Laporan masyarakat di bidang kesehatan yang berupa data teks yang tidak terstruktur (unstructured data) diklasifikasikan menjadi tiga kelas yaitu Aspirasi, Keluhan, dan Pertanyaan menggunakan metode machine learning yaitu Naïve Bayes. Pada periode Januari 2013 sampai dengan Desember 2015, jumlah laporan masyarakat yang masuk ke dalam sistem LAPOR! sebanyak 87492 laporan, terdapat 32047 atau sekitar 37% laporan yang belum ditanggapi, 8072 atau sekitar 9% laporan yang sedang proses ditanggapi, dan sisanya sebanyak 47373 atau 54% laporan sudah ditanggapi dan dinyatakan selesai. jumlah laporan yang paling banyak terdapat pada provinsi DKI Jakarta dan pulau Jawa secara keseluruhan. Provinsi yang menjadi pusat  area  yang  menyumbangkan  laporan terbanyak adalah DKI Jakarta sebanyak 25129 laporan, disusul Jawa Barat 15445 laporan, Jawa Timur 6106 laporan, Jawa Tengah 5818 laporan, dan seterusnya. Sedangkan provinsi yang paling sedikit melakukan lapor adalah provinsi Papua, Maluku, Maluku Utara, Sulawesi Barat, Irian Jaya Barat, dan  Gorontalo dengan jumlah laporan dari provinsi tersebut dibawah 100 laporan. Selanjutnya hasil klasifikasi akan dianalisis dengan metode Text Mining, konsep utamanya adalah dengan melakukakan ekplorasi seluas-seluasnya dan ekstraksi dengan data yang sangat banyak dan terus bertambah, sehingga ditemukan sebuah fakta dan informasi yang dianggap penting dan dapat berguna untuk berbagai bidang keperluan. Hasil klasifikasi menunjukkan tingkat akurasi sebesar 96.67%.



DOI: https://doi.org/10.29313/jstat.v18i1.3872

Refbacks

  • There are currently no refbacks.


Copyright Notice

Creative Commons License
STATISTIKA is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License