Perbandingan Model GAM dan Gamboost dalam Fitting Dataset Sea Surface Temperature

Miftahuddin Miftahuddin

Abstract


Fitting model GAM (generalized additive models) dan Gamboost (generalized additive models by boosting) untuk dataset SST (sea surface temperature) dimaksudkan sebagai upaya mencapai perbaikan fitting model terhadap data SST. Secara umum, model GAM dapat memvisualisasikan masing-masing kovariat, sedangkan model gamboost dapat memvisualisasikan lebih detail kovariatnya dalam beberapa bentuk, baik secara linier dan nonlinier. Pengukuran performance yang digunakan terhadap model adalah nilai AIC (Akaike Information Criteria) dan CV-risk. Model GAM dengan boosting menunjukkan lebih sesuai dalam struktur model, pemilihan model terbaik dan seleksi variabel pada dataset SST. Fitting model GAM dapat menghasilkan pola dan trend masing-masing kovariat meskipun memiliki beberapa gap, sedangkan pada model gamboost memiliki lebih banyak pilihan simultan dalam bentuk linier, nonlinier dan smooth untuk masing-masing kovariat. Kedua pendekatan fitting memiliki kelebihan yang dapat saling melengkapi dalam memodelkan dataset SST.



DOI: https://doi.org/10.29313/jstat.v18i1.3875

Refbacks

  • There are currently no refbacks.


Copyright Notice

Creative Commons License
STATISTIKA is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License