Profil Ekspresi mRNA Gen Murine Double Minute2, Kruppel-Like Factor4, dan c-Myc pada Fibrosarkoma
Abstract
Fibrosarkoma hanya terjadi 1–3% dari seluruh keganasan jaringan lunak. Hingga saat ini etiologi fibrosarkoma belum diketahui dengan pasti. Beberapa faktor dapat menjadi penyebab patogenesis fibrosarkoma antara lain radiasi, terpapar zat kimia tertentu, serta infeksi human herpes virus 8 (HHV8) dan Epstein-Barr virus (EBV). Penelitian terkini menunjukkan bahwa banyak sarkoma terkait dengan mutasi genetik. Penelitian ini bertujuan melihat profil ekspresi mRNA gen Krüppel-like Factor4, Murine Double Minute2, dan c-Myc pada fibrosarkoma menggunakan teknik real time PCR kuantitatif (quantitative real time PCR, qRT-PCR). Analisis data menggunakan metode kuantititatif relatif 2-ΔΔCt. Penelitian ini menggunakan 10 sampel kasus fibrosarkoma yang ditemukan di Kota Jambi dari tahun 2011–2015. Hasil ΔCt (+SD) MDM2, KLF-4, dan c-Myc disusun dari nilai yang terkecil hingga tertinggi adalah 1,85±2,14; 2,06±3,86; 2,9±2,66 secara berurutan. Dibanding dengan level ekspresi dengan GAPDH sebagai housekeeping gene, gen MDM2 dan KLF-4 relatif menurun dua kali lipat, sedangkan gen c-Myc relatif menurun lebih dari tiga kali lipat. Simpulan, penelitian ini menunjukkan bahwa pada kasus fibrosarkoma, gen c-Myc disupresi lebih kuat dibanding dengan gen MDM2 dan KLF-4.
STUDIES ON MRNA GENE EXPRESSION OF MDM2, KLF4,
AND C-MYC IN FIBROSARCOMA
Fibrosarcoma is a rare soft tissue sarcoma, reported only 1–3% of all soft tissue sarcomas. Like any other soft-tissue sarcomas the definitive caused has not yet understood. Recognized causes include exposure to ionizing radiation, various physical and chemical factors, infection with human herpes virus (HHV8) and Epstein-Barr virus (EBV). Current research indicates many sarcomas are associated with genetic mutations. In this study, we investigated profile of mRNA gene expression KLF4, MDM2, and c-Myc of RNA in fibrosarcoma cases. The genes expression was examined using quantitative real time PCR (qRT-PCR) and we analyzed the relative gene expression using the 2-ΔΔCt method. Ten samples of fibrosarcoma cases found in Jambi city from 2011 to 2015 were used. The three targeting genes were placed in the order from lowest to highest base on their ΔCt values compared to internal control genes using GAPDH genes. The results are as follows: MDM2 1.85±2.14, KLF-4 2.06±3.86, and c-Myc 2.9±2.66 respectively. A relative quantification by normalized target gene relative to GAPDH, describes the changes in expression of three genes. The status of MDM2 and KLF-4 were relatively decreased expression by 2 fold, and the states of c-Myc were relatively decreased by more than 3 fold. This suggest that in fibrosarcoma the c-Myc gene are suppressed stonger than those MDM2 and KLF-4 genes.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Weiss SW, Goldblum JR, Folpe AL. Enzinger and Weiss's soft tissue tumors. Edisi ke-5. Philadelphia. Mosby Elsevier; 2007.
Fletcher CDM, Unni KK, Mertens F. Pathology and genetics of tumours of soft tissue and bone. Lyon, France: IARC Press; 2002.
DeVita VT, Hellman S, Rosenberg SA. Cancer: principles and practice of oncology. Edisi ke-7. Philadelphia: Lippincott Williams and Wilkins; 2005.
van de Rijn M, Fletcher JA. Genetics of soft tissue tumors. Annu Rev Pathol. 2006;1:435–66.
Hu W, Feng Z, Levine AJ. The regulation of multiple p53 stress responses is mediated through MDM2. Genes Cancer. 2012;3(3–4):199–208.
Senturk E, Manfredi JJ. Mdm2 and tumorigenesis: evolving theories and unsolved mysteries. Genes Cancer. 2012;3(3–4):192–8.
Zhao Y, Yu H, Hu W. The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim Biophys Sin (Shanghai). 2014;46(3):180–9.
Candeias MM, Malbert-Colas L, Powell DJ, Daskalogianni C, Maslon MM, Naski N, dkk. p53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol. 2008;10(9):1098–105.
Gajjar M, Candeias MM, Malbert-Colas L, Mazars A, Fujita J, Olivares-Illana V, dkk. The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage. Cancer Cell. 2012;21(1):25–35.
McConnell BB, Yang VW. Mammalian Krüppel-like factors in health and diseases. Physiol Rev. 2010;90(4):1337–81.
Li J, Zheng H, Yu F, Yu T, Liu C, Huang S, dkk. Deficiency of the Krüppel-like factor KLF4 correlates with increased cell proliferation and enhanced skin tumorigenesis. Carcinogenesis. 2012;33(6): 1239–46.
Tetreault MP, Yang Y, Katz JP. Krüppel-like factors in cancer. Nat Rev Cancer. 2013;13(10):701–13.
Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol. 1999;19(1):1–11.
Lutz W, Leon J, Eilers M. Contributions of Myc to tumorigenesis. Biochim Biophys Acta. 2002;1602(1):61–71.
Wang C, Tai Y, Lisanti MP, Liao DJ. c-Myc induction of programmed cell death may contribute to carcinogenesis: a perspective inspired by several concepts of chemical carcinogenesis. Cancer Biol Ther. 2011;11(7):615–26.
Wade M, Wahl GM. c-Myc, genome instability, and tumorigenesis: the devil is in the details. Dalam: Eisenman RN, penyunting. The Myc/Max/Mad transcription factor network. Berlin: Springer Heidelberg; 2006. hlm. 169–203.
M. Nurhalim Shahib, Budiman, Zoraya A. Feranty. Studies on gene expression at the RNA level associated with the senile lens change in human lens cataract. DJMMS. 2015;2(3):11–8.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25(4):402–8.
Rayburn E, Zhang R, He J, Wang H. MDM2 and human malignancies: expression, clinical pathology, prognostic markers, and implications for chemotherapy. Curr Cancer Drug Targets. 2005;5(1):27–41.
Marumoto T, Zhang D, Saya H. Aurora-A. A guardian of poles. Nat Rev Cancer. 2005; 5(1):42–50.
Chen D, Kon N, Li M, Zhang W, Qin J, Gu W. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell. 2005;121(7): 1071–83.
Macias E, Jin A, Deisenroth C, Bhat K, Mao H, Lindström MS, dkk. An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 interaction. Cancer Cell. 2010;18(3):231–43.
DOI: https://doi.org/10.29313/gmhc.v5i1.1842
pISSN 2301-9123 | eISSN 2460-5441
Visitor since 19 October 2016:
Global Medical and Health Communication is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.