Death Receptor Fas as Molecular Target of Soursop Leaves Novel Isolate in Liver Cancer Targeted Therapy

Maya Tejasari, Dwi Prasetyo, Siti Aminah Abdurachman, Herri S. Sastramihardja

Abstract


In the past few decades, no effective systemic therapeutic modalities established in the unresectable liver cancer stage, so the prognosis remains poor. Apoptotic dysregulation of cancer cells through Fas gene expression linked to tumor development, progression, and resistance to treatment. Soursop plants believed to have potent anticancer activity. It hypothesized that active compounds in the soursop leaves would induce apoptosis by interfering with Fas gene expression in liver cancer cells. The study objective was to explore the role of an isolated from soursop leaves against Fas gene expression in liver cancer cells. This study used the HepG2 cell line culture, and treatment groups were given novel isolate (SF-1603) from soursop leaves with three different doses which conducted in Bandung in 2017. Observations assessed in hours 0, 24, 48, and 72. Measurement of gene expression was done with real-time PCR and apoptosis detection by the TUNEL method. The results showed that the novel isolate (SF-1603) from soursop leaves stimulate Fas optimum expressions to initiate apoptosis with 0.5×inhibitory concentration 50 (IC50) dosage at observation hour 48. There was a strong correlation between Fas gene expression with the apoptosis level. It concluded that the novel isolate (SF-1603) from soursop leaves is a potent anticancer that affects Fas gene expression in apoptosis induction on the liver cancer cell. It can be used as a candidate for a new therapeutic agent for liver cancer treatment.

 

RESEPTOR FAS SEBAGAI SASARAN MOLEKULER NOVEL ISOLAT DAUN SIRSAK PADA TERAPI BERTARGET KANKER HATI

Dalam beberapa dekade terakhir, tidak ada modalitas terapi sistemik yang efektif untuk pengobatan kanker hati tahap lanjut sehingga prognosisnya buruk. Disregulasi apoptosis sel kanker melalui ekspresi gen Fas terkait dengan perkembangan, perkembangan tumor, dan resistensi terhadap pengobatan. Tanaman sirsak dipercaya memiliki aktivitas antikanker yang kuat. Senyawa aktif dalam daun sirsak secara hipotesis dapat menginduksi apoptosis dengan memengaruhi ekspresi gen Fas pada sel kanker hati. Tujuan penelitian adalah mengeksplorasi peran isolat daun sirsak terhadap ekspresi gen Fas pada sel kanker hati. Penelitian ini menggunakan kultur sel kanker HepG2 dan kelompok perlakuan diberi isolat baru (SF-1603) daun sirsak dengan 3 dosis berbeda. Pengamatan dinilai pada jam ke-0, 24, 48, dan 72. Pengukuran ekspresi gen dilakukan dengan PCR real-time dan deteksi apoptosis dengan metode TUNEL. Hasil penelitian menunjukkan bahwa novel isolat (SF-1603) daun sirsak menstimulasi ekspresi optimal Fas untuk inisiasi apoptosis dengan dosis 0,5×inhibitory concentration 50 (IC50) pada pengamatan 48 jam. Terdapat korelasi yang kuat antara ekspresi gen Fas dan tingkat apoptosis. Disimpulkan bahwa isolat baru (SF-1603) daun sirsak adalah antikanker kuat yang memengaruhi ekspresi gen Fas dalam induksi apoptosis pada sel kanker hati sehingga dapat digunakan sebagai kandidat agen terapi baru untuk pengobatan kanker hati.


Keywords


Apoptosis; ekspresi gen Fas; Fas gene expression;kanker hati; liver cancer; sirsak; soursop; targetted therapy; terapi bertarget

Full Text:

PDF

References


Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391(10127):1301–14.

Schwartz JM, Carithers RL. Epidemiology and etiologic associations of hepatocellular carcinoma [Internet]. Guadalajara, Mexico: Sociedad Mexicana de Podología Médica AC (Somepomed); 2011 [cited 2019 November 18]. Available from: http://somepomed.org/articulos/contents/mobipreview.htm?8/29/8657.

Theise ND. Liver and gallbladder. In: Kumar V, Abbas AK, Aster JC, editors. Robbins and Cotran pathologic basis of disease. 9th Edition. Philadelphia, USA: Elsevier Saunders; 2015. p. 821–82.

Alqahtani A, Khan Z, Alloghbi A, Said Ahmed TS, Ashraf M, Hammouda DM. Hepatocellular carcinoma: molecular mechanisms and targeted therapies. Medicina (Kaunas). 2019;55(9):526.

Ho HK, Pok S, Streit S, Ruhe JE, Hart S, Lim KS, et al. Fibroblast growth factor receptor 4 regulates proliferation, anti-apoptosis and alpha-fetoprotein secretion during hepatocellular carcinoma progression and represents a potential target for therapeutic intervention. J Hepatol. 2009;50(1):118–27.

Huynh H, Ngo VC, Koong HN, Poon D, Choo SP, Toh HC, et al. AZD6244 enhances the anti-tumor activity of sorafenib in ectopic and orthotopic models of human hepatocellular carcinoma (HCC). J Hepatol. 2010;52(1):79–87.

Robotin MC, Kansil M, Howard K, George J, Tipper S, Dore GJ, et al. Antiviral therapy for hepatitis B-related liver cancer prevention is more cost-effective than cancer screening. J Hepatol. 2009;50(5):990–8.

Lencioni R, Crocetti L, Petruzzi P, Vignali C, Bozzi W, Pina CD, et al. Doxorubicin-eluting bead-enhanced radiofrequency ablation of hepatocellular carcinoma: a pilot clinical study. J Hepatol. 2008;49(2):217–22.

Cardoso AC, Moucari R, Figueiredo-Mendes C, Ripault MP, Giully N, Castelnau C, et al. Impact of peginterferon and ribavirin therapy on hepatocellular carcinoma: incidence and survival in hepatitis C patients with advanced fibrosis. J Hepatol. 2010;52(5):652–7.

Vogell A, Cervantes A, Chau I, Daniele B, Llovet JM, Meyer T, et al.; ESMO Guidelines Committee. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Suppl 4):iv238–55.

Bruix J, Sherman M; American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–2.

Sherman M, Burak K, Maroun J, Metrakos P, Knox JJ, Myers RP, et al. Multidisciplinary Canadian consensus recommendations for the management and treatment of hepatocellular carcinoma. Curr Oncol. 2011;18(5):228–40.

Park SH, Lee Y, Han SH, Kwon SY, Kwon OS, Kim SS, et al. Systemic chemotherapy with doxorubicin, cisplatin and capecitabine for metastatic hepatocellular carcinoma. BMC Cancer. 2006;6:3.

Abou-Alfa GK. Current and novel therapeutics for hepatocellular carcinoma. In: American Society of Clinical Oncology 2004 educational book (40th Annual Meeting June 5–8, 2004 New Orleans, LA). Alexandria, USA: American Society of Clinical Oncology; 2004. p. 192–7.

Wirth T, Kühnel F, Fleischmann-Mundt B, Woller N, Djojosubroto M, Rudolph KL, et al. Telomerase-dependent virotherapy overcomes resistance of hepatocellular carcinomas against chemotherapy and tumor necrosis factor-related apoptosis-inducing ligand by the elimination of Mcl-1. Cancer Res. 2005;65(16):7393–402.

Chang YC, Xu YH. Expression of Bcl-2 inhibited Fas-mediated apoptosis in human hepatocellular carcinoma BEL-7404 cells. Cell Res. 2000;10(3):233–42.

El Bassiouny AEI, Nora E I El-Bassiouni NEI, Nosseir MMF, Zoheiry MMK, El-Ahwany EG, Salah F, et al. Circulating and hepatic Fas expression in HCV-induced chronic liver disease and hepatocellular carcinoma. Medscape J Med. 2008;10(6):130.

Saikumar P. Apoptosis and cell death. In: Cagle PT, Allen TC, editors. Basic concept of molecular pathology. New York: Springer Science+Bussines Media; 2009. p. 29–40.

Marschitz I, Tinhofer I, Hittmair A, Egle A, Kos M, Greil R. Analysis of Bcl-2 protein expression in chronic lymphocytic leukemia. A comparison of three semiquantitation techniques. Am J Clin Pathol. 2000;113(2):219–29.

Liu Q, Chen J, Liu L, Zhang J, Wang D, Ma L, et al. The X protein of hepatitis B virus inhibits apoptosis in hepatoma cells through enhancing the methionine adenosyltransferase 2A gene expression and reducing S-adenosylmethionine production. J Biol Chem. 2011;286(19):17168–80.

He H, Wu X, Yu B, Liu K, Zhou G, Qian G, et al. The effect of desacetyluvaricin on the expression of TLR4 and P53 protein in Hepg 2.2.15. Hepat Mon. 2011;11(5):364–7.

Hsieh SY, Hsu CY, He JR, Liu CL, Lo SJ, Chen YC, et al. Identifying apoptosis-evasion proteins/pathways in human hepatoma cells via induction of cellular hormesis by UV ifradiation. J Proteome Res. 2009;8(8):3977–86.

Lee SH, Shin MS, Lee HS, Bae JH, Lee HK, Kim HS, et al. Expression of Fas and Fas-related molecules in human hepatocellular carcinoma. Hum Pathol. 2001;32(3):250–6.

Yildiz L, Baris S, Aydin O, Kefeli M, Kandemir B. Bcl-2 positivity in B and C hepatitis and hepatocellular carcinomas. Hepatogastroeneterology. 2008;55(88):2207–10.

Rodriguez ML, Estrela JM, Ortega AL. Natural polyphenols and apoptosis induction in cancer therapy. J Carcinogene Mutagene. 2013;S6:004.

Crown Human Genome Center, Department of Molecular Genetics, Weizmann Institute of Science. Fas cell surface death receptor (previous names: tumor necrosis factor receptor superfamily, member 6, Fas) [Internet]. Rehovot, Israel: Weizmann Institute of Science; 2019 [cited 2019 November 20]. Available from: https://genecards.weizmann.ac.il/v3/cgi-bin/carddisp.pl?gene=FAS.

Tejasari M, Sastramihardja HS, Abdurrachman SA, Prasetyo D. Anticancer activity of novel soursop leaves active compound (SF-1603) through apoptotic induction in liver cancer. MJFAS. 2018;14(2):226–34.




DOI: https://doi.org/10.29313/gmhc.v8i2.6169

pISSN 2301-9123 | eISSN 2460-5441


Visitor since 19 October 2016: 


Free counters!


Global Medical and Health Communication is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.