Scoping review: Studi Potensi Tanaman Herbal pada Reseptor Dopamin terhadap Penyakit Parkinson

Jekmal Malau, Munir Alinu Mulki, Tintia Rafika Putri, Putri Setya Tyasna

Abstract


Abstrak
Ulasan ini berfokus pada tanaman herbal yang memiliki potensial aksi pada neurotransmitter. Tujuannya adalah memberikan informasi dan pemahaman mengenai potensi beberapa tanaman herbal yang berpengaruh terhadap penyakit Parkinson. Metode yang digunakan untuk melakukan studi literatur adalah scoping review dengan mencari beberapa jurnal penelitian yang dipublikasi di jurnal internasional melalui database elektronik. Database elektronik yang digunakan antara lain: Medscape, PubMed, Google Scholar, NCBI. Kata kunci (keywords) yang digunakan adalah “Parkinson disease”. Hasilnya diperoleh 24 jurnal terpilih. Tanaman yang sudah dilaporkan tersebut, yaitu Safflower (Carthamus tinctorius. L.), mengandung kaempferol 3-O-rutinoside (K3R) dan anhydro safflor yellow B (AYB) mengurangi ekspresi nod-like receptor protein 3 (NLRP3) dan caspase 1, penyebab peradangan parkinson. Senyawa ginsenosida dari tanaman ginseng (Panax ginseng) memperkuat fungsi otak, mencegah peradangan saraf dan stres oksidatif, mengurangi berbagai gangguan neurodegeneratif seperti parkinson. Tanaman teh hijau (Camellia sinensis) mengandung senyawa epicatechin dan epigallocatechin gallate menurunkan immunostaining untuk COX-2, dan mengurangi produksi NO dari ketiga isoform NOS, termasuk iNOS. Ekstrak C. asiatica memiliki efek nootropik, melindungi otak dari kerusakan neurodegeneratif.

Kata kunci: Neurotransmitter, parkinson, tanaman herbal


Study of Herbal Plants Potency on Dopamine Receptors against Parkinson's Disease

Abstract
This review focuses on herbal plants that have action potentials on neurotransmitters. The aim is to provide information and understanding about the potential of several herbal plants that affect Parkinson’s disease. The method used to conduct a literature study is scoping review which searches several research journals published in international journals through electronic databases. The electronic databases used include: Medscape, PubMed, Google Scholar, NCBI. The keyword used is “Parkinson disease”. The result is that there are 24 selected journals. The reported plant, namely Safflower (Carthamus tinctorius. L.), contains kaempferol 3-O-rutinoside (K3R) and anhydro saffron yellow B (AYB) reduces expression of nod-like receptor protein 3 (NLRP3) and caspase 1, which cause inflammation parkinsons. Ginsenoside compounds from the ginseng plant (Panax ginseng) strengthen brain function, prevent neuroinflammation and oxidative stress, reduce various neurodegenerative disorders such as Parkinson’s. Green tea plant (Camellia sinensis) containing epicatechin and epigallocatechin gallate compounds reduced immunostaining for COX-2, and reduced NO production of all three NOS isoforms, including iNOS. C.asiatica extract has a nootropic effect, protecting the brain from neurodegenerative damage.

Keywords: Herbal plants, neurotransmitter, parkinson


Keywords


Neurotransmitter; parkinson; tanaman herbal; Herbal plants; neurotransmitter; parkinson

References


Ginsberg L. Lecture no tes eurologi. Jakarta: Erlangga; 2008.

Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of parkinson's disease: a systematic review and meta-analysis. Mov Disord. 2014 Nov;29(13):1583–90.

Ardhianta IR, Peranginangin JM, Handayani SR. Antiparkinson activity of rosella extract (Hibiscus sabbdariffa l.) in white male (Rattus norvegicus) sprague dawley rats induced by haloperidol. JFI. 2017 Nov;14(2):160–8.

Yadav SK, Rai SN, Singh SP. Mucuna pruriens shows neuroprotective effect by inhibiting apoptotic pathways of dopaminergic neurons in the paraquat mouse model of parkinsonism. EJPMR. 2016 July 11;3(8):441-451.

Rai SN, Birla H, Singh SS, Zahra W, Patil RR, Jadhav JP, dkk. Mucuna pruriens protects against MPTP intoxicated neuroinflammation in parkinson’s disease through nf-κb/pakt signaling pathways. Front Aging Neurosci. 2017 Dec 19;9(421):1-14.

Daubner SC, Le T, Wang S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys. 2011 Apr 1;508(1):1–12.

Pengestiningsih TW, Susmiati T, Wijayanto H. L-3,4-dihydroxyphenylalanine content as a neuroprotective material on fresh, cooked and fermented of koro benguk (Mucuna pruriens) beans. J Vet. 2017 Apr;18(1):116–20.

Adi YK, Widayanti R, Pangestiningsih TW. n-Propanol extract of boiled and fermented koro benguk (Mucuna pruriens seed) shows a neuroprotective effect in paraquat dichloride- induced Parkinson’s disease rat model. Vet World. 2018 Sep;11(9):1250–4.

Aubin N, Curet O, Deffois A, Carter C. Aspirin and salicylate protect against MPTP-induced dopamine depletion in mice. J Neurochem. 1998 Oct;71(4):1635–42.

Singh RK, Pandey BL. Anti-inflammatory activity of Elaeocarpus sphaericus fruit extract in rats. J Med Arom Plant Sci. 1999;21:1030–2.

Bagewadi HG, Khan AA. Evaluation of anti- parkinsonian activity of Elaeocarpus ganitrus on haloperidol induced parkinson’s disease in mice. IJBCP. 2014;4(1):102–6.

Ding H, Xiong Y, Sun J, Chen C, Gao J, Xu H. Asiatic acid prevents oxidative stress and apoptosis by inhibiting the translocation of α-synuclein into mitochondria. Front Neurosci. 2018;12(431):1-10.

Blume SR, Cass DK, Tseng KY. Stepping test in mice: a reliable approach in determining forelimb akinesia in MPTP-induced parkinsonism. Exp Neurol. 2009;219:208–11.

Balakrishnan R, Vijayraja D, Mohankumar T, Manimaran D, Ganesan P, Choi D-Kug, dkk. Isolongifolene mitigates rotenone-induced dopamine depletion and motor deficits through anti-oxidative and anti-apoptotic effects in a rat model of parkinson’s disease. J Chem Neuroanat. 2021 Mar;112:101890.

Wang H, Liu J, Gao G, Wu X, Wang X, Yang H. Protection effect of piperine and piperlonguminine from Piper longum L. alkaloids against rotenone-induced neuronal injury. Brain Res. 2016;1639:214–27.

Schapira AH, Jenner P. Etiology and pathogenesis of parkinson’s disease. Mov Disord. 2011 May 11;26:1049–55.

Yague GAJ, Rada P, Rojo AI, Lastres-Becker I, Cuadrado A. Nuclear import and export signals control the subcellular localization of nurr1 protein in response to oxidative stress. J Biol Chem. 2013 Jan 2;288:5506–17.

Lindersson E, Beedholm R, Højrup P, Moos T, Gai W, Hendil KB, dkk. Proteasomal inhibition by α-synuclein filaments and oligomers. J Biol Chem. 2004 Mar;279:12924–34.

Ahmadi FA, Linseman DA, Grammatopoulos TN, Jones SM, Bouchard RJ, Freed CR, dkk. The pesticide rotenone induces caspase-3-mediated apoptosis in ventral mesencephalic dopaminergic neurons. J Neurochem. 2003 Nov;87:914–21.

Horowitz JM, Pastor DM, Goyal A, Kar S, Ramdeen N, Hallas BH, dkk. BAX protein immunoreactivity in midbrain neurons of Parkinson’s disease patients. Brain Res Bull. 2003 Nov 15;62(1):55– 61.

Lei H, Ren R, Sun Y, Zhang K, Zhao X, Ablat N, dkk. Neuroprotective effects of safflower flavonoid extract in 6-hydroxydopamine-induced model of parkinson's disease may be related to its anti-inflammatory action. Molecules. 2020 Nov 9;25(21):5206.

Ablat N, Lv D, Ren RT, Xiaokaiti Y, Ma X, Zhao X, dkk. Neuroprotective effects of a standardized flavonoid extract from safflower against a rotenone-induced rat model of Parkinson’s disease. Molecules. 2016 Aug 24;21(9):1107.

Graeber MB, Li W, Rodriguez ML. Role of microglia in CNS inflammation. FEBS Lett. 2011 Dec 1;585(23):3798–805.

Huang X, Li N, Pu Y, Zhang T, Wang B. Neuroprotective effects of ginseng phytochemicals: recent perspectives. Molecules (Basel, Switzerland). 2019 Aug 14;24(16):2939.

Zhou T, Zu G, Zhang X, Wang X, Li S, Gong X, dkk. Neuroprotective effects of ginsenoside Rg1 through the Wnt/beta-catenin signaling pathway in both in vivo and in vitro models of Parkinson’s disease. Neuropharmacology. 2016 Feb;101:480– 9.

Heng Y, Zhang QS, Mu Z, Hu JF, Yuan YH, Chen NH. Ginsenoside Rg1 attenuates motor impairment and neuroinflammation in the MPTP- probenecid-induced parkinsonism mouse model by targeting alpha-synuclein abnormalities in the substantia nigra. Toxicol Lett. 2016 Jan 22;243:7– 21.

Pinto NB, Alexandre B, Neves KR, Silva AH, Leal LK, Viana GS. Neuroprotective properties of the standardized extract from Camellia sinensis (green tea) and its main bioactive components, epicatechin and epigallocatechin gallate, in the 6-OHDA model of parkinson’s disease. Evid Based Complement Alternat Med. 2015 Jun 18;2015(1):161092.

Khotimah H, Ali M, Sumitro SB, Widodo MA. Decreasing α-synuclein aggregation by methanolic extract of centella asiatica in zebrafish parkinson’s model. Asian Pac J Trop Biomed. 2015 Nov;5(11):948–54.

Ren B, Zhang YX, Zhou HX, Sun FW, Zhang ZF, Wei Z, dkk. Tanshinone IIA prevents the loss of nigrostriatal dopaminergic neurons by inhibiting NADPH oxidase and iNOS in the MPTP model of Parkinson's disease. J Neurol Sci. 2015 Jan 15;348(1–2):142–52.

Wang T, Li C, Han B, Wang Z, Meng X, Zhang L, dkk. Neuroprotective effects of danshensu on rotenone-induced parkinson’s disease models in vitro and in vivo. BMC Complement. Med Ther. 2020 Jan 23;20(20):1-10.

Manjusha V, Suresh D, Venkatachalam V. Antiparkinsonian activity of moringa concanensis and sesbania grandiflora in 6-hydroxy dopamine induced parkinsonism in rats. JMPAS. 2022 Jan;11(1):4324–7.

Yu D, Zhang P, Li Y, Liu T, Zhang Y, Wang Q, dkk. Neuroprotective effects of Ginkgo biloba dropping pills in parkinson’s disease. J Pharm Anal. 2021 Apr;11(2):220–31.

Ingale SP, Kasture SB. Antioxidant and antiparkinsonian activity of passiflora incarnata leaves. Orient Pharm Exp Med. 2014 Mar 5;14(3):231–6.




DOI: https://doi.org/10.29313/jiks.v5i1.11066

Refbacks

  • There are currently no refbacks.



eISSN: 2656-8438


View My Stats 


Flag Counter

Jurnal Integrasi Kesehatan dan Sains is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.