STUDI IN SILICO MEKANISME AKSI SENYAWA FTALOSIANINA SEBAGAI KANDIDAT FOTOSENSITIZER DALAM TERAPI COVID-19 BERBASIS FOTODINAMIKA

Taufik Muhammad Fakih, Nurfadillah Hazar, Mentari Luthfika Dewi, Tanisa Maghfira Syarza, Anggi Arumsari

Abstract


Sindrom pernapasan akut parah coronavirus-2 (SARS-CoV-2) yang menyebabkan pandemi penyakit infeksi COVID-19 menggunakan protein spike untuk dapat berikatan dengan reseptor angiotensin-converting enzyme 2 (ACE2) dalam sel inang. Beberapa kandidat obat yang diprediksi dapat digunakan dalam terapi COVID-19 seperti, tegobuvir, sonidegib, siramesine, antrafenine, bemcentinib, itacitinib, dan ftalosianina secara farmakologis mampu menghambat penempelan SARS-CoV-2 pada reseptor ACE2. Akan tetapi menariknya terapi fotodinamika dengan memanfaatkan senyawa ftalosianina berlabel logam saat ini dapat menjadi pilihan alternatif untuk terapi COVID-19 karena lebih efektif dan spesifik terhadap target.Melalui penelitian ini akan dilakukan identifikasi, evaluasi, dan eksplorasi afinitas serta interaksi molekular yang mampu menggambarkan mekanisme aksi dari struktur senyawa turunan ftalosianina berlabel logam secara in silico. Simulasi penambatan molekular ligan-protein antara besi ftalosianina (Fe-Pc) dan galium ftalosianina (Ga-Pc) terhadap protein spike SARS-CoV-2 dilakukan dengan menggunakan perangkat lunak PatchDock. Berdasarkan simulasi penambatan molekular ligan-protein diperoleh hasil bahwa senyawa galium ftalosianina (Ga-Pc) memiliki afinitas yang lebih baik dibandingkan besi ftalosianina (Fe-Pc) terhadap protein spike SARS-CoV-2, dengan nilai masing-masing sebesar −2366,68 kJ/mol dan −2225,55 kJ/mol. Dari hasil tersebut dapat diprediksi perbedaan struktur molekul senyawa turunan ftalosianina berlabel logam terbukti mampu mempengaruhi mekanisme aksi terhadap protein target. Dengan demikian, hasil penelitian ini diharapkan dapat menjadi referensi dalam mendesain struktur senyawa turunan ftalosianina berlabel logam sebagai kandidat fotosensitizer dalam terapi fotodinamika untuk penyakit infeksi COVID-19.


Keywords


COVID-19, Protein Spike SARS-CoV-2, Terapi Fotodinamika, Ftalosianina, Studi In Silico

References


Agrawal, P., Singh, H., Srivastava, H. K., Singh, S., Kishore, G., & Raghava, G. P. S. (2019). Benchmarking of different molecular docking methods for protein-peptide docking. BMC Bioinformatics. https://doi.org/10.1186/s12859-018-2449-y

Aruleba, R. T., Adekiya, T. A., Oyinloye, B. E., & Kappo, A. P. (2018). Structural Studies of Predicted Ligand Binding Sites and Molecular Docking Analysis of Slc2a4 as a Therapeutic Target for the Treatment of Cancer. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms19020386

Bharath, B. R., Damle, H., Ganju, S., & Damle, L. (2020). In silico screening of known small molecules to bind ACE2 specific RBD on Spike glycoprotein of SARS-CoV-2 for repurposing against COVID-19. F1000Research. https://doi.org/10.12688/f1000research.24143.1

Devaux, C. A., Rolain, J. M., Colson, P., & Raoult, D. (2020). New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? International Journal of Antimicrobial Agents. https://doi.org/10.1016/j.ijantimicag.2020.105938

Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols. https://doi.org/10.1038/nprot.2016.051

Gautret, P., Lagier, J. C., Parola, P., Hoang, V. T., Meddeb, L., Mailhe, M., Doudier, B., Courjon, J., Giordanengo, V., Vieira, V. E., Tissot Dupont, H., Honoré, S., Colson, P., Chabrière, E., La Scola, B., Rolain, J. M., Brouqui, P., & Raoult, D. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents. https://doi.org/10.1016/j.ijantimicag.2020.105949

Guruprasad, L. (2020). Evolutionary relationships and sequence-structure determinants in human SARS coronavirus-2 spike proteins for host receptor recognition. Proteins: Structure, Function and Bioinformatics. https://doi.org/10.1002/prot.25967

Hall, D. C., & Ji, H. F. (2020). A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Medicine and Infectious Disease. https://doi.org/10.1016/j.tmaid.2020.101646

Hijazi, S., Visca, P., & Frangipani, E. (2017). Gallium-protoporphyrin IX inhibits Pseudomonas aeruginosa growth by targeting cytochromes. Frontiers in Cellular and Infection Microbiology. https://doi.org/10.3389/fcimb.2017.00012

Kampf, G., Todt, D., Pfaender, S., & Steinmann, E. (2020). Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. In Journal of Hospital Infection. https://doi.org/10.1016/j.jhin.2020.01.022

Korneev, D., Kurskaya, O., Sharshov, K., Eastwood, J., & Strakhovskaya, M. (2019). Ultrastructural aspects of photodynamic inactivation of highly pathogenic avian H5N8 influenza virus. Viruses. https://doi.org/10.3390/v11100955

Leelananda, S. P., & Lindert, S. (2016). Computational methods in drug discovery. In Beilstein Journal of Organic Chemistry. https://doi.org/10.3762/bjoc.12.267

Li, F. (2016). Structure, Function, and Evolution of Coronavirus Spike Proteins. Annual Review of Virology. https://doi.org/10.1146/annurev-virology-110615-042301

Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S. M., Lau, E. H. Y., Wong, J. Y., Xing, X., Xiang, N., Wu, Y., Li, C., Chen, Q., Li, D., Liu, T., Zhao, J., Liu, M., … Feng, Z. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. In New England Journal of Medicine. https://doi.org/10.1056/NEJMoa2001316

Liu, J., Cao, R., Xu, M., Wang, X., Zhang, H., Hu, H., Li, Y., Hu, Z., Zhong, W., & Wang, M. (2020). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. In Cell Discovery. https://doi.org/10.1038/s41421-020-0156-0

Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., & Manson, J. J. (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. In The Lancet. https://doi.org/10.1016/S0140-6736(20)30628-0

Nguyen, N. T., Nguyen, T. H., Pham, T. N. H., Huy, N. T., Bay, M. Van, Pham, M. Q., Nam, P. C., Vu, V. V., & Ngo, S. T. (2020). Autodock Vina Adopts More Accurate Binding Poses but Autodock4 Forms Better Binding Affinity. Journal of Chemical Information and Modeling. https://doi.org/10.1021/acs.jcim.9b00778

Nikolaeva-Glomb, L., Mukova, L., Nikolova, N., Kussovski, V., Doumanova, L., Mantareva, V., Angelov, I., Wöhrle, D., & Galabov, A. S. (2017). Photodynamic effect of some phthalocyanines on enveloped and naked viruses. Acta Virologica. https://doi.org/10.4149/av_2017_313

Ravindranath, P. A., Forli, S., Goodsell, D. S., Olson, A. J., & Sanner, M. F. (2015). AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility. PLoS Computational Biology. https://doi.org/10.1371/journal.pcbi.1004586

Remichkova, M., Mukova, L., Nikolaeva-Glomb, L., Nikolova, N., Doumanova, L., Mantareva, V., Angelov, I., Kussovski, V., & Galabov, A. S. (2017). Virus inactivation under the photodynamic effect of phthalocyanine zinc(II) complexes. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences. https://doi.org/10.1515/znc-2016-0119

Samaei-Daryan, S., Goliaei, B., & Ebrahim-Habibi, A. (2017). Characterization of surface binding sites in glycoside hydrolases: A computational study. Journal of Molecular Recognition. https://doi.org/10.1002/jmr.2624

Shirataki, C., Shoji, O., Terada, M., Ozaki, S. I., Sugimoto, H., Shiro, Y., & Watanabe, Y. (2014). Inhibition of heme uptake in pseudomonas aeruginosa by its hemophore (HasAp) bound to synthetic metal complexes. Angewandte Chemie - International Edition. https://doi.org/10.1002/anie.201307889

Van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., De Wit, E., & Munster, V. J. (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. In New England Journal of Medicine. https://doi.org/10.1056/NEJMc2004973

Varghese, G., John, R., Manesh, A., Karthik, R., & Abraham, O. (2020). Clinical management of COVID-19. In Indian Journal of Medical Research. https://doi.org/10.4103/ijmr.IJMR_957_20

Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. https://doi.org/10.1016/j.cell.2020.02.058

Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. In Cell Research. https://doi.org/10.1038/s41422-020-0282-0

Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. Y., Wang, Q., Zhou, H., Yan, J., & Qi, J. (2020). Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell. https://doi.org/10.1016/j.cell.2020.03.045

Wilder-Smith, A., Chiew, C. J., & Lee, V. J. (2020). Can we contain the COVID-19 outbreak with the same measures as for SARS? In The Lancet Infectious Diseases. https://doi.org/10.1016/S1473-3099(20)30129-8

Wu, D., & Yang, X. O. (2020). TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. Journal of Microbiology, Immunology and Infection. https://doi.org/10.1016/j.jmii.2020.03.005

Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C., & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature. https://doi.org/10.1038/s41586-020-2008-3

Xu, H., Zhong, L., Deng, J., Peng, J., Dan, H., Zeng, X., Li, T., & Chen, Q. (2020). High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. International Journal of Oral Science. https://doi.org/10.1038/s41368-020-0074-x

Xu, X., Huang, M., & Zou, X. (2018). Docking-based inverse virtual screening: methods, applications, and challenges. Biophysics Reports. https://doi.org/10.1007/s41048-017-0045-8

Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. https://doi.org/10.1126/science.abb2762

Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H., & Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. https://doi.org/10.1016/S0140-6736(20)30566-3

Ziegler, C. G. K., Allon, S. J., Nyquist, S. K., Mbano, I. M., Miao, V. N., Tzouanas, C. N., Cao, Y., Yousif, A. S., Bals, J., Hauser, B. M., Feldman, J., Muus, C., Wadsworth, M. H., Kazer, S. W., Hughes, T. K., Doran, B., Gatter, G. J., Vukovic, M., Taliaferro, F., … Zhang, K. (2020). SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell. https://doi.org/10.1016/j.cell.2020.04.035




DOI: https://doi.org/10.29313/jiff.v4i1.6784

Refbacks

  • There are currently no refbacks.



Indexed and Journal List Title by :

Neliti

CiteFactorResearch BIB
MorarefDRJIESJIEuroPubScientific Indexing Services
CrossRefPortal GarudaWorldCatScilitIndonesia One Search
Publons

JIFF Flag Counter
 
Visitor Since 20 December 2018 :


View My Summary StatCounter

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License