Indra Topik Maulana


Dunaliella salina merupakan mikroalga halotolerant yang mampu bertahan dan tumbuh pada kondisi lingkungan yang ekstrim. Upaya Dunaliella salina untuk bertahan adalah dengan meningkatkan produksi senyawa karotenoid serta senyawa lainnya. Tingkat salinitas yang tinggi, defisiensi Nitrogen, serta pengaruh suhu dan pencahayaan terbukti memberikan pengaruh terhadap pertumbuhan Dunaliella salina serta meningkatkan produksi β-karoten. Tingginya kadar β-karoten memiliki hubungan erat terhadap peningkatan aktivitas sitotoksik Dunaliella salina terhadap sel kanker. Beberapa penelitian telah membuktikan (baik melalui uji invitro maupun invivo) bahwa Dunaliella salina baik yang dikultur pada media normal maupun hasil modifikasi mampu menghambat pertumbuhan sel kanker melalui beragam mekanisme. 9-Cis- β-Carotene (9CβC) merupakan jenis β-karoten yang banyak diproduksi secara alami oleh Dunaliella salina dan terbukti memiliki aktivitas sitotoksik lebih baik dibandingkan dengan β-karoten sintetik yang memiliki bentuk geometri All Trans β-Carotene (ATβC). Meskipun memiliki aktivitas sitotoksik, namun Dunaliella salina tetap aman dan selektif dalam menghambat pertumbuhan sel.


Antikanker, Dunaliella salina, Media kultur, Sitotoksik

Full Text:



Ahmed, F. et al., 2014. Profiling of carotenoids and antioxidant capacity of microalgae from subtropical coastal and brackish waters, Food Chemistry, 165: 300–306.

Almutairi, A. W., 2020. Effects of nitrogen and phosphorus limitations on fatty acid methyl esters and fuel properties of Dunaliella salina, Environmental Science and Pollution Research, 27(26): 32296–32303.

Atasever-Arslan, B. et al., 2015. Cytotoxic effect of extract from Dunaliella salina against SH-SY5Y neuroblastoma cells, Gen. Physiol. Biophys., 34: 201–207.

Badr, A. M. et al., 2014. Anti-inflammatory and anti-cancer effects of β-carotene, extracted from Dunaliella bardawil by milking, Journal of Food, Agriculture and Environment, 12(3–4): 24–31.

Bechelli, J. et al., 2011. Cytotoxicity of Algae Extracts on Normal and Malignant Cells, Leukemia Research and Treatment, 2011: 1–7.

Bonnefond, H. et al., 2017. Coupling and uncoupling of triglyceride and beta-carotene production by Dunaliella salina under nitrogen limitation and starvation, Biotechnology for Biofuels, 10(1): 1–10.

Brighi, N. et al., 2021. The cyclin-dependent kinases pathway as a target for prostate cancer treatment: rationale and future perspectives, Critical Reviews in Oncology/Hematology, 157: 103199.

Chen, H., Lao, Y. M. and Jiang, J. G., 2011. Effects of salinities on the gene expression of a (NAD+)-dependent glycerol-3-phosphate dehydrogenase in Dunaliella salina, Science of the Total Environment, 409(7): 1291–1297.

Chiu, H. F. et al., 2017. Anti-proliferative, anti-inflammatory and pro-apoptotic effects of Dunaliella salina on human KB oral carcinoma cells, Journal of Food Biochemistry, 41(3): 1–8.

Chuang, W. C. et al., 2014. Dunaliella salina exhibits an antileukemic immunity in a mouse model of WEHI-3 leukemia cells, Journal of Agricultural and Food Chemistry, 62(47): 11479–11487.

Crinier, A. et al., 2020. SnapShot: Natural Killer Cells, Cell, 180(6): 1280-1280.e1.

Crowley, L. C. and Waterhouse, N. J., 2016. Detecting cleaved caspase-3 in apoptotic cells by flow cytometry, Cold Spring Harbor Protocols, 2016(11): 958–962.

Darvish, M. et al., 2018. Potential cytotoxic effects of peptide fractions from Dunaliella salina protein hydrolyzed by gastric proteases, Journal of Aquatic Food Product Technology, 27(2): 165–175.

Dewi, I. C. et al., 2018. Anticancer, antiviral, antibacterial, and antifungal properties in microalgae, in Microalgae in Health and Disease Prevention. Elsevier Inc.: 235–261.

Dewick, P. M., 2009. Medicinal Natural Products : A Biosynthetic Approach. 3rd edn. Chichester: A John Wiley and Sons.

El-Baz, F. K. et al., 2017. Cytotoxic activity of carotenoid rich fractions from Haematococcus pluvialis and Dunaliella salina microalgae and the identification of the phytoconstituents using LC-DAD/ESI-MS, Phytotherapy Research, 32(2): 1–7.

Elleuch, F. et al., 2020. Deciphering the biological activities of dunaliella sp. Aqueous extract from stressed conditions on breast cancer: From in vitro to in vivo investigations, International Journal of Molecular Sciences, 21(5).

Flassig, R. J. et al., 2016. Dynamic flux balance modeling to increase the production of high-value compounds in green microalgae, Biotechnology for Biofuels, 9(1): 1–12.

Harvey, P. J. and Ben-Amotz, A., 2020. Towards a sustainable Dunaliella salina microalgal biorefinery for 9-cis β-carotene production, Algal Research.

Huang, Q. et al., 2011. Caspase 3–mediated stimulation of tumor cell repopulation during cancer radiotherapy, Nature Medicine, 17(7): 860–866.

Jayappriyan, K. R. et al., 2013. In vitro anticancer activity of natural β-carotene from Dunaliella salina EU5891199 in PC-3 cells, Biomedicine and Preventive Nutrition, 3(2):99–105.

Kemenkes RI., 2019 Profil Kesehatan Indonesia 2018

Khalilzadeh, B. et al., 2018. Advances in nanomaterial based optical biosensing and bioimaging of apoptosis via caspase-3 activity: a review, Microchimica Acta, 185(9): 434.

Klein, M. A., 2020. Cyclin-dependent kinase inhibition: an opportunity to target protein-protein interactions, in Donev, R. (ed.) Advances in Protein Chemistry and Structural Biology. Elsevier Ltd,

Lauritano, C. et al., 2016. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities, Frontiers in Marine Science, 3: 1–2.

Lou, S. et al., 2020. Identification of microRNAs response to high light and salinity that involved in beta-carotene accumulation in microalga Dunaliella salina, Algal Research, 48: 101925.

Male, V. et al., 2017. Natural Killer Cells in Liver Disease, Seminars in Liver Disease, 37(03): 198–209.

Malumbres, M. and Barbacid, M., 2009. Cell cycle, CDKs and cancer: a changing paradigm, Nature Reviews Cancer, 9(3): 153–166.

Manikandan, P. and Nagini, S., 2017. Cytochrome P450 Structure, Function and Clinical Significance: A Review, Current Drug Targets, 19(1): 38–54.

Méndez, O. and Villanueva, J., 2015. Challenges and opportunities for cell line secretomes in cancer proteomics, PROTEOMICS - Clinical Applications, 9(3–4): 348–357.

Mo, E. et al., 2012. Anticancer effect of Dunaliella salina under stress and normal conditions against skin carcinoma cell line A431 in vitro, Iranian Journal of Fisheries Sciences, 11(2): 283–293.

Olmos, J., Gómez, R. and Rubio, V. P., 2015. Apoptosis Comparison Effects Between Synthetic and Natural Β-Carotene from Dunaliella salina on MDA-MB-231Brest Cancer Cells, J Microb Biochem Technol, 7(2): 51–56.

Park, S., Lee, Y. and Jin, E. S., 2013. Comparison of the responses of two Dunaliella strains, Dunaliella salina CCAP 19/18 and Dunaliella bardawil to light intensity with special emphasis on carotenogenesis, Algae, 28(2): 203–211.

Pasquet, V. et al., 2011. Antiproliferative activity of violaxanthin isolated from bioguided fractionation of Dunaliella tertiolecta extracts, Marine Drugs, 9(5): 819–831.

Purnamasari, D., 2018. The Emergence of Non-communicable Disease in Indonesia, 50(4): 273–274.

Raja, R., Hema Iswarya, S., et al., 2007. PCR-identification of Dunaliella salina (Volvocales, Chlorophyta) and its growth characteristics, Microbiological Research, 162(2): 168–176.

Raja, R., Hemaiswarya, S., et al., 2007. Protective effect of Dunaliella salina (Volvocales, Chlorophyta) against experimentally induced fibrosarcoma on wistar rats, Microbiological Research, 162(2): 177–184.

Ravi, M., Ramesh, A. and Pattabhi, A., 2017. Contributions of 3D Cell Cultures for Cancer Research, Journal of Cellular Physiology, 232(10): 2679–2697.

Raz, O. et al., 2019. Dunaliella salina and Haloferax volcanii Synergistically Attenuate Skin Cancer in Vitro, Journal of Cancer Therapy, 10(09): 747–754.

Sheu, M. J. et al., 2008. Ethanol extract of Dunaliella salina induces cell cycle arrest and apoptosis in A549 human non-small cell lung cancer cells, In Vivo, 22(3): 369–378.

Singh, A. K. et al., 2019. Green synthesis of gold nanoparticles from Dunaliella salina, its characterization and in vitro anticancer activity on breast cancer cell line, Journal of Drug Delivery Science and Technology, 51: 164–176.

Singh, P., Baranwal, M. and Reddy, S. M., 2016. Antioxidant and cytotoxic activity of carotenes produced by Dunaliella salina under stress, Pharmaceutical Biology, 54(10): 2269–2275.

Srinivasan, R. et al., 2017. Oral administration of lyophilized Dunaliella salina, a carotenoid-rich marine alga, reduces tumor progression in mammary cancer induced rats, Food and Function, 8(12): 4517–4527.

Srinivasan, R. et al., 2018. Bicarbonate supplementation enhances growth and biochemical composition of Dunaliella salina V-101 by reducing oxidative stress induced during macronutrient deficit conditions, Scientific Reports, 8(1): 1–14.

Suresh, K. et al., 2019. A nonapoptotic endothelial barrier-protective role for caspase-3, American Journal of Physiology-Lung Cellular and Molecular Physiology, 316(6): L1118–L1126.

WCRF (2018) Worldwide cancer data; Global cancer statistics for the most common cancers. Available at: (Accessed: 6 May 2021).

Wood, D. J. and Endicott, J. A., 2018. Structural insights into the functional diversity of the CDK–cyclin family, Open Biology, 8(9): 180112.

Wu, Q. et al., 2019. Characterization and diverse evolution patterns of glycerol-3-phosphate dehydrogenase family genes in Dunaliella salina, Gene, 710: 161–169.

Wu, Z. et al., 2016. The effects of light, temperature, and nutrition on growth and pigment accumulation of three dunaliella salina strains isolated from saline soil, Jundishapur Journal of Microbiology, 9(1): 1–9.

Xi, Y. et al., 2020. Effects of different light regimes on Dunaliella salina growth and β-carotene accumulation, Algal Research.

Zamani, H., Rastegari, B. and Varamini, M., 2019. Antioxidant and anti-cancer activity of Dunaliella salina extract and oral drug delivery potential via nano-based formulations of gum Arabic coated magnetite nanoparticles, Journal of Drug Delivery Science and Technology, 54,:101278.

Zhang, X. et al., 2015. ‘Effect of enhanced UV-B radiation on photosynthetic characteristics of marine microalgae Dunaliella salina (Chlorophyta, Chlorophyceae), Journal of Experimental Marine Biology and Ecology, 469: 27–35.

Zhou, M. et al., 2018. Caspase-3 regulates the migration, invasion and metastasis of colon cancer cells, International Journal of Cancer, 143(4):921–930.



  • There are currently no refbacks.

Indexed and Journal List Title by :


CiteFactorResearch BIB
MorarefDRJIESJIEuroPubScientific Indexing Services
CrossRefPortal GarudaWorldCatScilitIndonesia One Search

Free counters!
Visitor since 20 December 2018 :

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License