AKTIVITAS PREBIOTIK PISANG SERTA EFEKNYA TERHADAP KESEHATAN DAN PENYAKIT
Abstract
Prebiotik dapat ditemukan dalam bentuk serat pangan pada sayuran dan buah-buahan. Prebiotik secara selektif mampu meningkatkan pertumbuhan bakteri menguntungkan pada saluran pencernaan. Bakteri menguntungkan pada kolon akan mengubah prebiotik menjadi asam lemak rantai pendek yang memiliki efek menguntungkan bagi kesehatan inangnya. Pisang (Musa spp.) merupakan salah satu buah yang telah banyak diteliti sebagai prebiotik. Berbagai varietas pisang telah diteliti dan menunjukkan efek pada pertumbuhan bakteri menguntungkan Bifidobacterium dan Lactobacilli. Tujuan tinjauan pustaka sistematis ini adalah untuk merangkum informasi ilmiah mengenai potensi pisang sebagai prebiotik. Artikel ini membahas mengenai jenis dan bagian-bagian tanaman yang digunakan, senyawa yang berperan dalam efek prebiotik serta efek pisang terhadap kesehatan dan pengendalian penyakit. Metode yang digunakan adalah penelusuran artikel melalui basis data Science Direct dan Google Scholar. Hasil penelusuran menunjukkan bahwa varietas pisang yang banyak diteliti sebagian besar berasal dari persilangan Musa acuminata (genom A) dengan Musa balbisiana (genom B). Bagian buah, kulit buah, dan batang pisang terbukti memiliki efek sebagai prebiotik. Kandungan senyawa yang berperan dalam meningkatkan bakteri Bifidobacteria dan Lactobacilli diantaranya adalah pati, pektin, oligosakarida, fruktan serta selulosa larut air. Efek prebiotik pisang diketahui berkaitan dengan efeknya sebagai antiinflamasi, peningkat sistem imun dan antibakteri.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Adebola, O. O., Corcoran, O., & Morgan, W. A. (2014). Synbiotics: the impact of potential prebiotics inulin, lactulose and lactobionic acid on the survival and growth of lactobacilli probiotics. Journal of Functional Foods, 10, 75–84. https://doi.org/https://doi.org/10.1016/j.jff.2014.05.010
Almeida-Junior, L. D., Curimbaba, T. F. S., Chagas, A. S., Quaglio, A. E. V, & Di Stasi, L. C. (2017). Dietary intervention with green dwarf banana flour (Musa sp. AAA) modulates oxidative stress and colonic SCFAs production in the TNBS model of intestinal inflammation. Journal of Functional Foods, 38, 497–504. https://doi.org/https://doi.org/10.1016/j.jff.2017.09.038
Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., & Gil, A. (2012). Probiotic mechanisms of action. Annals of Nutrition & Metabolism, 61(2), 160–174. https://doi.org/10.1159/000342079
Budhisatria, R., Rosaria, R., Jap, L., & Jan, T. T. (2017). In vitro and in vivo prebiotic activities of purified oligosaccharides derived from various local bananas (Musa sp.): Tanduk, Uli, Raja Sereh, and Cavendish. Microbiology Indonesia, 11(2), 3.
Campbell, J. M., Bauer, L. L., Fahey George C., Hogarth, A. J. C. L., Wolf, B. W., & Hunter, D. E. (1997). Selected Fructooligosaccharide (1-Kestose, Nystose, and 1F-β-Fructofuranosylnystose) Composition of Foods and Feeds. Journal of Agricultural and Food Chemistry, 45(8), 3076–3082. https://doi.org/10.1021/jf970087g
Chockchaisawasdee, S., & Poosaran, N. (2013). Production of isomaltooligosaccharides from banana flour. Journal of the Science of Food and Agriculture, 93(1), 180–186. https://doi.org/10.1002/jsfa.5747
Cordeiro, N., Belgacem, M. N., Torres, I. C., & Moura, J. C. V. . (2004). Chemical composition and pulping of banana pseudo-stems. Industrial Crops and Products, 19(2), 147–154. https://doi.org/https://doi.org/10.1016/j.indcrop.2003.09.001
de Freitas, C., Terrone, C. C., Masarin, F., Carmona, E. C., & Brienzo, M. (2021). In vitro study of the effect of xylooligosaccharides obtained from banana pseudostem xylan by enzymatic hydrolysis on probiotic bacteria. Biocatalysis and Agricultural Biotechnology, 33, 101973. https://doi.org/https://doi.org/10.1016/j.bcab.2021.101973
Doan, C. T., Chen, C.-L., Nguyen, V. B., Tran, T. N., Nguyen, A. D., & Wang, S.-L. (2021). Conversion of Pectin-Containing By-Products to Pectinases by Bacillus amyloliquefaciens and Its Applications on Hydrolyzing Banana Peels for Prebiotics Production. Polymers, 13(9), 1483.
Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75
Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of Nutrition, 125(6), 1401–1412. https://doi.org/10.1093/jn/125.6.1401
Happi Emaga, T., Robert, C., Ronkart, S. N., Wathelet, B., & Paquot, M. (2008). Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties. Bioresource Technology, 99(10), 4346–4354. https://doi.org/https://doi.org/10.1016/j.biortech.2007.08.030
Hardisari, R., & Amaliawati, N. (2016). Manfaat Prebiotik Tepung Pisang Kepok (Musa paradisiaca formatypica) terhadap Pertumbuhan Probiotik Lactobacillus casei secara In Vitro. Jurnal Teknologi Laboratorium, 5(2), 64–67.
Hogarth, A. J., Hunter, D. E., Jacobs, W. A., Garleb, K. A., & Wolf, B. W. (2000). Ion chromatographic determination of three fructooligosaccharide oligomers in prepared and preserved foods. Journal of Agricultural and Food Chemistry, 48(11), 5326–5330. https://doi.org/10.1021/jf000111h
Horie, K., Hossain, M. S., Morita, S., Kim, Y., Yamatsu, A., Watanabe, Y., Ohgitani, E., Mazda, O., & Kim, M. (2020). The potency of a novel fermented unripe banana powder as a functional immunostimulatory food ingredient. Journal of Functional Foods, 70, 103980. https://doi.org/https://doi.org/10.1016/j.jff.2020.103980
Jaiturong, P., Laosirisathian, N., Sirithunyalug, B., Eitssayeam, S., Sirilun, S., Chaiyana, W., & Sirithunyalug, J. (2020a). Physicochemical and prebiotic properties of resistant starch from Musa sapientum Linn., ABB group, cv. Kluai Namwa Luang. Heliyon, 6(12), e05789.
Jaiturong, P., Laosirisathian, N., Sirithunyalug, B., Eitssayeam, S., Sirilun, S., Chaiyana, W., & Sirithunyalug, J. (2020b). Potential of Musa sapientum Linn. for digestive function promotion by supporting Lactobacillus sp. Heliyon, 6(10), e05247. https://doi.org/https://doi.org/10.1016/j.heliyon.2020.e05247
Jovanovic-Malinovska, R., Kuzmanova, S., & Winkelhausen, E. (2014). Oligosaccharide profile in fruits and vegetables as sources of prebiotics and functional foods. International Journal of Food Properties, 17(5), 949–965.
Juarez-Garcia, E., Agama-Acevedo, E., Sáyago-Ayerdi, S. G., Rodríguez-Ambriz, S. L., & Bello-Pérez, L. A. (2006). Composition, digestibility and application in breadmaking of banana flour. Plant Foods for Human Nutrition (Dordrecht, Netherlands), 61(3), 131–137. https://doi.org/10.1007/s11130-006-0020-x
Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165(6), 1332–1345. https://doi.org/10.1016/j.cell.2016.05.041
Kurtoglu, G., & Yildiz, S. (2011). Extraction of fructo-oligosaccaride components from banana peels. Gazi University Journal of Science, 24(4), 877–882.
L’homme, C., Peschet, J. L., Puigserver, A., & Biagini, A. (2001). Evaluation of fructans in various fresh and stewed fruits by high-performance anion-exchange chromatography with pulsed amperometric detection. Journal of Chromatography. A, 920(1–2), 291–297. https://doi.org/10.1016/s0021-9673(00)01262-0
Mahore, J. G., & Shirolkar, S. V. (2018). Investigation of effect of ripening and processing on prebiotic potential of banana. Journal of Young Pharmacists, 10(4), 409.
Markowiak, P., & Śliżewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9(9), 1021.
Mitsou, E. K., Kougia, E., Nomikos, T., Yannakoulia, M., Mountzouris, K. C., & Kyriacou, A. (2011). Effect of banana consumption on faecal microbiota: a randomised, controlled trial. Anaerobe, 17(6), 384–387. https://doi.org/10.1016/j.anaerobe.2011.03.018
Mohapatra, D., Mishra, S., & Sutar, N. (2010). Banana and its by-product utilisation: an overview. Journal of Scientific and Industrial Research, 69(5), 323–329.
Musita, N. (2012). Kajian Kandungan dan Karakterisik Pati Resisten dari Berbagai Varietas Pisang. Jurnal Teknologi & Industri Hasil Pertanian, 14(1), 68–79.
Nakamura, Y. K., & Omaye, S. T. (2012). Metabolic diseases and pro- and prebiotics: Mechanistic insights. Nutrition & Metabolism, 9(1), 60. https://doi.org/10.1186/1743-7075-9-60
Nurhayati, N., Maryanto, M., & Tafrikhah, R. (2016). Pectin Extraction from Banana Peels and Bunch with Various Temperatures and Methods. 36(3), 327–334.
Nurhayati, N., Nafi’, A., & Pratiwi, Y. N. (2015). Evaluasi Sifat Prebiotik Serat Pangan Tidak Larut Air (STLA) Terekstrak dari Tepung Buah Pisang Agung dan Pisang Mas. Jurnal Agroteknologi; Vol 9 No 01 (2015).
O’Keefe, S. J. D. (2016). Diet, microorganisms and their metabolites, and colon cancer. Nature Reviews. Gastroenterology & Hepatology, 13(12), 691–706. https://doi.org/10.1038/nrgastro.2016.165
Pereira, G. A., Arruda, H. S., Molina, G., & Pastore, G. M. (2018). Extraction optimization and profile analysis of oligosaccharides in banana pulp and peel. Journal of Food Processing and Preservation, 42(1), e13408. https://doi.org/10.1111/jfpp.13408
Pereira, M. A. F., Cesca, K., Poletto, P., & de Oliveira, D. (2021). New perspectives for banana peel polysaccharides and their conversion to oligosaccharides. Food Research International, 149, 110706. https://doi.org/https://doi.org/10.1016/j.foodres.2021.110706
Phirom-on, K., & Apiraksakorn, J. (2021). Development of cellulose-based prebiotic fiber from banana peel by enzymatic hydrolysis. Food Bioscience, 41, 101083.
Pluznick, J. L. (2016). Gut microbiota in renal physiology: focus on short-chain fatty acids and their receptors. Kidney International, 90(6), 1191–1198. https://doi.org/10.1016/j.kint.2016.06.033
Poerba, Y. S. (2016). Katalog Pisang Koleksi Kebun Plasma Nutfah Pisang Pusat Penelitian Biologi-LIPI. In Lembaga Ilmu Pengetahuan Indonesia (LIPI) Pusat Penelitian Biologi-LIPI. LIPI Press.
Pongmalai, P., & Devahastin, S. (2019). Profiles of prebiotic fructooligosaccharides , inulin and sugars as well as physicochemical properties of banana and its snacks as affected by ripening stage and applied drying methods. Drying Technology, 0(0), 1–11. https://doi.org/10.1080/07373937.2019.1700517
Pop, C., Suharoschi, R., & Pop, O. L. (2021). Dietary Fiber and Prebiotic Compounds in Fruits and Vegetables Food Waste. In Sustainability (Vol. 13, Issue 13). https://doi.org/10.3390/su13137219
Powthong, P., Jantrapanukorn, B., Suntornthiticharoen, P., & Laohaphatanalert, K. (2020). Study of prebiotic properties of selected banana species in Thailand. Journal of Food Science and Technology, 57(7), 2490–2500.
Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., Wolvers, D., Watzl, B., Szajewska, H., & Stahl, B. (2010). Prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 104(S2), S1–S63.
Shalini, R., Abinaya, G., Saranya, P., & Antony, U. (2017). LWT - Food Science and Technology Growth of selected probiotic bacterial strains with fructans from Nendran banana and garlic. LWT - Food Science and Technology, 83, 68–78. https://doi.org/10.1016/j.lwt.2017.03.059
Shinde, T., Perera, A. P., Vemuri, R., Gondalia, S. V, Beale, D. J., Karpe, A. V, Shastri, S., Basheer, W., Southam, B., Eri, R., & Stanley, R. (2020). Synbiotic supplementation with prebiotic green banana resistant starch and probiotic Bacillus coagulans spores ameliorates gut inflammation in mouse model of inflammatory bowel diseases. European Journal of Nutrition, 59(8), 3669–3689. https://doi.org/10.1007/s00394-020-02200-9
Tian, D. D., Xu, X. Q., Peng, Q., Zhang, Y. W., Zhang, P. B., Qiao, Y., & Shi, B. (2020). Effects of banana powder (Musa acuminata Colla) on the composition of human fecal microbiota and metabolic output using in vitro fermentation. Journal of Food Science, 85(8), 2554–2564. https://doi.org/10.1111/1750-3841.15324
Uraipan, S., Brigidi, P., & Hongpattarakere, T. (2014). Antagonistic mechanisms of synbiosis between Lactobacillus plantarum CIF17AN2 and green banana starch in the proximal colon model challenged with Salmonella Typhimurium. Anaerobe, 28, 44–53.
Valmayor, R. V, Jamaluddin, S. H., Silayoi, B., Kusumo, S., Danh, L. D., Pascua, O. C., & Espino, R. R. C. (2000). Banana cultivar names and synonyms in Southeast Asia. Internationa; Network for Improvement of Banana and Plaintain-Asia and the Pasific Office.
Zahid, H. F., Ranadheera, C. S., Fang, Z., & Ajlouni, S. (2021). Utilization of Mango, Apple and Banana Fruit Peels as Prebiotics and Functional Ingredients. Agriculture, 11(7), 584
DOI: https://doi.org/10.29313/jiff.v6i2.11825
Refbacks
- There are currently no refbacks.
Indexed and Journal List Title by :
View My Summary StatCounter
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License